Home
Class 12
MATHS
The sum of the maximum and minimum value...

The sum of the maximum and minimum values of the function `f(x)=1/(1+(2cosx-4sinx)^2)i s`

A

(a) `22/21`

B

(b) `21/20`

C

(c) `22/20`

D

(d) `21/11`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the maximum and minimum values of the function \( f(x) = \frac{1}{1 + (2 \cos x - 4 \sin x)^2} \). ### Step-by-Step Solution: 1. **Identify the variable part of the function**: The function can be rewritten as: \[ f(x) = \frac{1}{1 + g(x)} \] where \( g(x) = (2 \cos x - 4 \sin x)^2 \). 2. **Find the maximum and minimum values of \( g(x) \)**: We need to analyze the expression \( 2 \cos x - 4 \sin x \). We can use the formula for the maximum and minimum values of a linear combination of sine and cosine: \[ a \cos x + b \sin x \text{ has a maximum value of } \sqrt{a^2 + b^2} \text{ and a minimum value of } -\sqrt{a^2 + b^2}. \] Here, \( a = 2 \) and \( b = -4 \). 3. **Calculate the maximum and minimum values**: \[ \sqrt{2^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}. \] Therefore, \[ -\sqrt{20} \leq 2 \cos x - 4 \sin x \leq \sqrt{20}. \] This implies: \[ -2\sqrt{5} \leq 2 \cos x - 4 \sin x \leq 2\sqrt{5}. \] 4. **Square the expression**: Since \( g(x) = (2 \cos x - 4 \sin x)^2 \), we can find the minimum and maximum values of \( g(x) \): - The minimum value occurs when \( 2 \cos x - 4 \sin x = 0 \), thus \( g(x) = 0 \). - The maximum value occurs when \( 2 \cos x - 4 \sin x = 2\sqrt{5} \), thus: \[ g(x) = (2\sqrt{5})^2 = 20. \] 5. **Substitute back to find \( f(x) \)**: - The maximum value of \( f(x) \) occurs when \( g(x) \) is at its minimum: \[ f_{\text{max}} = \frac{1}{1 + 0} = 1. \] - The minimum value of \( f(x) \) occurs when \( g(x) \) is at its maximum: \[ f_{\text{min}} = \frac{1}{1 + 20} = \frac{1}{21}. \] 6. **Calculate the sum of maximum and minimum values**: \[ f_{\text{max}} + f_{\text{min}} = 1 + \frac{1}{21} = \frac{21}{21} + \frac{1}{21} = \frac{22}{21}. \] ### Final Answer: The sum of the maximum and minimum values of the function \( f(x) \) is: \[ \frac{22}{21}. \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x)=4/(x+2)+x .

Find the maximum and minimum values of the function f(x)=tanx-2x .

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,\ pi] .

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,pi]

Find the minimum value of the function f(x)=(1+sinx)(1+cosx),AAx inR .

Find the maximum and minimum values of the following functions. f(x)=sinx+sqrt(3)cosx

Find the maximum and minimum value of f if any of the function f(x)=|x-1|, x in R .

The maximum value of the function f(x) = (1)/( 4x^(2) + 2 x + 1) is

Find the maximum and minimum value of f(x)=sinx+1/2cos2xin[0,pi/2]dot

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Find the number of solutions of the equation e^(2x) + e^x-2=[{x^2 + 10...

    Text Solution

    |

  2. Total number of values of x, of the form 1/n, n in N in the interval ...

    Text Solution

    |

  3. The sum of the maximum and minimum values of the function f(x)=1/(1+(2...

    Text Solution

    |

  4. Let f: X -> Y be an invertible function. Show that the inverse of f^(...

    Text Solution

    |

  5. The range of values of a so that all the roots of the equations 2x^(3)...

    Text Solution

    |

  6. If f(x) is continuous such that abs(f(x)) le 1, forall x in R " and " ...

    Text Solution

    |

  7. Let f(x)=sqrt(|x|-|x+)(w h e r e{dot} denotes the fractional part of (...

    Text Solution

    |

  8. If the graphs of the functionsy= log (e)x and y = ax intersect at exac...

    Text Solution

    |

  9. A quadratic polynomial maps from [-2,3] onto [0,3] and touches X-axis ...

    Text Solution

    |

  10. The range of the function y=sqrt(2{x}-{x}^2-3/4) (where, denotes the f...

    Text Solution

    |

  11. Let f(x) be a fourth differentiable function such f(2x^2-1)=2xf(x)AA x...

    Text Solution

    |

  12. Number of solutions of the equation, [y+[y]]=2cosx is: (where y=1//3)[...

    Text Solution

    |

  13. If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x), then period of f(x)...

    Text Solution

    |

  14. If x and alpha are real, then the inequation log(2)x+log(x)2+2cos al...

    Text Solution

    |

  15. The range of values of ‘a' such that (1/2)^|x|= x² - a is satisfied f...

    Text Solution

    |

  16. Let f:R rarr R be a function defined by f(x)={abs(cosx)}, where {x} re...

    Text Solution

    |

  17. The domain of the function f(x)=sqrt(log(sinx+cosx)(abs(cosx)+cosx))...

    Text Solution

    |

  18. If f(x)=(x^(2)+2alphax+alpha^(2)-1)^(1//4) has its domain and range su...

    Text Solution

    |

  19. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is - (a)f is one-...

    Text Solution

    |

  20. The expression x^2-4px+q^2> 0 for all real x and also r^2+ p^2 < qr t...

    Text Solution

    |