Home
Class 12
MATHS
Let a=3^(1//224)+1 and for all n ge 3, ...

Let `a=3^(1//224)+1` and for all `n ge 3`,
let `f(n)=""^(n)C_(0)a^(n-1)-""^(n)C_(1)a^(n-2)+""^(n)C_(2)a^(n-3)+...+(_1)^(n-1)*""^(n)C_(n-1)*a^(0).`
If the value of f(2016)+f(2017)=`3^(k)`, the value of K is

A

6

B

8

C

9

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(n) \) defined as: \[ f(n) = \binom{n}{0} a^{n-1} - \binom{n}{1} a^{n-2} + \binom{n}{2} a^{n-3} - \ldots + (-1)^{n-1} \binom{n}{n-1} a^0 \] where \( a = 3^{1/224} + 1 \). ### Step 1: Rewrite \( f(n) \) We can rewrite \( f(n) \) using the binomial theorem. We can factor out \( a \) from each term: \[ f(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} a^{n-k-1} \] This can be simplified to: \[ f(n) = \frac{1}{a} \left( (a - 1)^n - (-1)^n \right) \] ### Step 2: Calculate \( f(2016) \) and \( f(2017) \) Now we need to find \( f(2016) \) and \( f(2017) \): \[ f(2016) = \frac{1}{a} \left( (a - 1)^{2016} - (-1)^{2016} \right) \] Since \( (-1)^{2016} = 1 \): \[ f(2016) = \frac{1}{a} \left( (a - 1)^{2016} - 1 \right) \] Similarly, for \( f(2017) \): \[ f(2017) = \frac{1}{a} \left( (a - 1)^{2017} - (-1)^{2017} \right) \] Since \( (-1)^{2017} = -1 \): \[ f(2017) = \frac{1}{a} \left( (a - 1)^{2017} + 1 \right) \] ### Step 3: Add \( f(2016) \) and \( f(2017) \) Now we add \( f(2016) \) and \( f(2017) \): \[ f(2016) + f(2017) = \frac{1}{a} \left( (a - 1)^{2016} - 1 \right) + \frac{1}{a} \left( (a - 1)^{2017} + 1 \right) \] Combining these: \[ f(2016) + f(2017) = \frac{1}{a} \left( (a - 1)^{2016} + (a - 1)^{2017} \right) \] ### Step 4: Factor out \( (a - 1)^{2016} \) We can factor out \( (a - 1)^{2016} \): \[ f(2016) + f(2017) = \frac{(a - 1)^{2016}}{a} \left( 1 + (a - 1) \right) \] This simplifies to: \[ f(2016) + f(2017) = \frac{(a - 1)^{2016}}{a} \cdot a = (a - 1)^{2016} \] ### Step 5: Substitute \( a \) Now substituting \( a = 3^{1/224} + 1 \): \[ f(2016) + f(2017) = (3^{1/224})^{2016} = 3^{2016/224} = 3^{9} \] ### Step 6: Find \( k \) Given that \( f(2016) + f(2017) = 3^k \), we have: \[ 3^k = 3^9 \] Thus, \( k = 9 \). ### Final Answer The value of \( k \) is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Let S_(n)=""^(n)C_(0)""^(n)C_(1)+""^(n)C_(1)""^(n)C_(2)+…..+""^(n)C_(n-1)""^(n)C_(n). "If" (S_(n+1))/(S_(n))=(15)/(4) , find the sum of all possible values of n (n in N)

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The expression x^2-4px+q^2> 0 for all real x and also r^2+ p^2 < qr t...

    Text Solution

    |

  2. Let f(x)=(x^(4)-lambdax^(3)-3x^(2)+3lambdax)/(x-lambda). If range of f...

    Text Solution

    |

  3. Let a=3^(1//224)+1 and for all n ge 3, let f(n)=""^(n)C(0)a^(n-1)-""...

    Text Solution

    |

  4. The area bounded by f(x)=sin^(-1)(sinx) and g(x)=pi/2-sqrt(pi^(2)/2-...

    Text Solution

    |

  5. If f.R rarr R,f(x)=(x^(2)+bx+1)/(x^(2)+2x+b),(b gt 1) " and " f(x), 1/...

    Text Solution

    |

  6. The period of sin""(pi[x])/12+cos""(pi[x])/4+tan""(pi[x])/3, where [x]...

    Text Solution

    |

  7. If f(2x+3y ,2x-7y)=20 x ,t h e nf(x , y)e q u a l sdot 7x-3y 7x+3y...

    Text Solution

    |

  8. The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

    Text Solution

    |

  9. The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cose...

    Text Solution

    |

  10. Let f(x) be a polynominal one-one function such that f(x)f(y)+2=f(x)...

    Text Solution

    |

  11. Let f(x) be a polynominal with real coefficients such that f(x)=f'(x) ...

    Text Solution

    |

  12. Let A={1,2,3,4,5} and f:A rarr A be an into function such that f(x) ne...

    Text Solution

    |

  13. If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(199...

    Text Solution

    |

  14. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  15. Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-(x))dot Show that g(...

    Text Solution

    |

  16. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

    Text Solution

    |

  17. If f(x) is a real-valued function discontinuous at all integral points...

    Text Solution

    |

  18. A function f from integers to integers is defined as f(x)={n+3, n in ...

    Text Solution

    |

  19. If f:R->R and f(x)=sin(pi{x})/(x^4+3x^2+7), where {} is a fractional p...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |