Home
Class 12
MATHS
The domain of the function f(x)=cos^(-1...

The domain of the function `f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x))` is

A

`x in R`

B

x=1,-1

C

`-1 le x le 1`

D

`x in phi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \cos^{-1}(\sec(\cos^{-1} x)) + \sin^{-1}(\csc(\sin^{-1} x)) \), we will analyze each component of the function step by step. ### Step 1: Identify the components of the function The function consists of two parts: 1. \( \cos^{-1}(\sec(\cos^{-1} x)) \) 2. \( \sin^{-1}(\csc(\sin^{-1} x)) \) ### Step 2: Analyze the first component \( \cos^{-1}(\sec(\cos^{-1} x)) \) - The domain of \( \cos^{-1}(x) \) is \( x \in [-1, 1] \). - For \( \sec(\cos^{-1} x) \), we know that \( \sec(\theta) = \frac{1}{\cos(\theta)} \). Therefore, \( \sec(\cos^{-1} x) = \frac{1}{x} \). - We need \( \frac{1}{x} \) to be in the domain of \( \cos^{-1} \), which means \( \frac{1}{x} \) must lie within the interval \([-1, 1]\). ### Step 3: Set up inequalities for \( \frac{1}{x} \) We need to solve the inequalities: 1. \( -1 \leq \frac{1}{x} \leq 1 \) From \( \frac{1}{x} \geq -1 \): - This implies \( x \leq -1 \) (since \( x \) cannot be zero). From \( \frac{1}{x} \leq 1 \): - This implies \( x \geq 1 \). ### Step 4: Analyze the second component \( \sin^{-1}(\csc(\sin^{-1} x)) \) - The domain of \( \sin^{-1}(x) \) is \( x \in [-1, 1] \). - For \( \csc(\sin^{-1} x) \), we know that \( \csc(\theta) = \frac{1}{\sin(\theta)} \). Therefore, \( \csc(\sin^{-1} x) = \frac{1}{x} \). - Similar to the first component, we need \( \frac{1}{x} \) to be in the domain of \( \sin^{-1} \), which means \( \frac{1}{x} \) must also lie within the interval \([-1, 1]\). ### Step 5: Set up inequalities for \( \frac{1}{x} \) in the second component The inequalities are the same: 1. \( -1 \leq \frac{1}{x} \leq 1 \) From \( \frac{1}{x} \geq -1 \): - This implies \( x \leq -1 \). From \( \frac{1}{x} \leq 1 \): - This implies \( x \geq 1 \). ### Step 6: Combine the results From both components, we have: 1. \( x \leq -1 \) 2. \( x \geq 1 \) ### Step 7: Determine the domain The only values that satisfy both conditions are \( x = -1 \) and \( x = 1 \). Therefore, the domain of the function \( f(x) \) is: \[ \{ -1, 1 \} \] ### Final Answer The domain of the function \( f(x) \) is \( x = -1 \) and \( x = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)= cos^(-1)(x+[x]) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=sqrt(sin x-1) is

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function f(x)=sin^(-1)(2x-3) .

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. If f(2x+3y ,2x-7y)=20 x ,t h e nf(x , y)e q u a l sdot 7x-3y 7x+3y...

    Text Solution

    |

  2. The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

    Text Solution

    |

  3. The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cose...

    Text Solution

    |

  4. Let f(x) be a polynominal one-one function such that f(x)f(y)+2=f(x)...

    Text Solution

    |

  5. Let f(x) be a polynominal with real coefficients such that f(x)=f'(x) ...

    Text Solution

    |

  6. Let A={1,2,3,4,5} and f:A rarr A be an into function such that f(x) ne...

    Text Solution

    |

  7. If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(199...

    Text Solution

    |

  8. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  9. Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-(x))dot Show that g(...

    Text Solution

    |

  10. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

    Text Solution

    |

  11. If f(x) is a real-valued function discontinuous at all integral points...

    Text Solution

    |

  12. A function f from integers to integers is defined as f(x)={n+3, n in ...

    Text Solution

    |

  13. If f:R->R and f(x)=sin(pi{x})/(x^4+3x^2+7), where {} is a fractional p...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. Find dy/dx if y= 3^x

    Text Solution

    |

  16. Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x(1), x(2)...

    Text Solution

    |

  17. If A gt 0, c,d,u.v are non-zero constants and the graph of f(x)=abs(Ax...

    Text Solution

    |

  18. If f(x)=x^(3)+3x^(2)+4x+asinx+bcosx, forall x in R is a one-one fuctio...

    Text Solution

    |

  19. If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 ar...

    Text Solution

    |

  20. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |