Home
Class 12
MATHS
If two roots of the equation (p-1)(x^2 +...

If two roots of the equation `(p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0` are real and distinct and `f(x)=(1-x)/(1+x)` then `f(f(x))+f(f(1/x))` is equal to

A

(a) `p`

B

(b) `-p`

C

(c) `2p`

D

(d) `-2p`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start with the given equation and the function \( f(x) \). ### Step 1: Analyze the given equation The equation is: \[ (p-1)(x^2 + x + 1)^2 - (p+1)(x^4 + x^2 + 1) = 0 \] We need to find conditions under which this equation has two real and distinct roots. ### Step 2: Simplify the equation Rearranging the equation gives: \[ (p-1)(x^2 + x + 1)^2 = (p+1)(x^4 + x^2 + 1) \] This can be simplified further by substituting \( u = x + \frac{1}{x} \), which leads to \( x^2 + \frac{1}{x^2} = u^2 - 2 \). ### Step 3: Substitute and analyze the roots We can express \( x^2 + x + 1 \) and \( x^4 + x^2 + 1 \) in terms of \( u \): - \( x^2 + x + 1 = \frac{u^2 + 3}{2} \) - \( x^4 + x^2 + 1 = \frac{u^4 + 2u^2 + 3}{2} \) Substituting these into the equation will allow us to analyze the roots in terms of \( u \). ### Step 4: Determine conditions for real and distinct roots To ensure that the roots are real and distinct, we will need to analyze the discriminant of the resulting polynomial in \( u \). ### Step 5: Evaluate the function \( f(x) \) The function given is: \[ f(x) = \frac{1-x}{1+x} \] We need to compute \( f(f(x)) + f(f(1/x)) \). ### Step 6: Compute \( f(f(x)) \) First, we compute \( f(f(x)) \): 1. Substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{1-x}{1+x}\right) = \frac{1 - \frac{1-x}{1+x}}{1 + \frac{1-x}{1+x}} \] 2. Simplifying this expression gives: \[ = \frac{\frac{(1+x) - (1-x)}{1+x}}{\frac{(1+x) + (1-x)}{1+x}} = \frac{\frac{2x}{1+x}}{\frac{2}{1+x}} = x \] ### Step 7: Compute \( f(f(1/x)) \) Next, we compute \( f(f(1/x)) \): 1. Substitute \( 1/x \) into \( f(x) \): \[ f(1/x) = \frac{1 - 1/x}{1 + 1/x} = \frac{x-1}{x+1} \] 2. Now compute \( f(f(1/x)) \): \[ f(f(1/x)) = f\left(\frac{x-1}{x+1}\right) = \frac{1 - \frac{x-1}{x+1}}{1 + \frac{x-1}{x+1}} \] 3. Simplifying this expression gives: \[ = \frac{\frac{(x+1) - (x-1)}{x+1}}{\frac{(x+1) + (x-1)}{x+1}} = \frac{\frac{2}{x+1}}{\frac{2x}{x+1}} = \frac{1}{x} \] ### Step 8: Combine results Now we combine the results: \[ f(f(x)) + f(f(1/x)) = x + \frac{1}{x} \] ### Step 9: Conclusion Thus, the final result is: \[ f(f(x)) + f(f(1/x)) = x + \frac{1}{x} \] ### Final Answer The value of \( f(f(x)) + f(f(1/x)) \) is \( x + \frac{1}{x} \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=9x-x^(2) , x in R , then f(a+1)-f(a-1) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x+4) = x^(2) - 1 , then f(x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))) , then

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f(x) be a polynominal with real coefficients such that f(x)=f'(x) ...

    Text Solution

    |

  2. Let A={1,2,3,4,5} and f:A rarr A be an into function such that f(x) ne...

    Text Solution

    |

  3. If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(199...

    Text Solution

    |

  4. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  5. Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-(x))dot Show that g(...

    Text Solution

    |

  6. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

    Text Solution

    |

  7. If f(x) is a real-valued function discontinuous at all integral points...

    Text Solution

    |

  8. A function f from integers to integers is defined as f(x)={n+3, n in ...

    Text Solution

    |

  9. If f:R->R and f(x)=sin(pi{x})/(x^4+3x^2+7), where {} is a fractional p...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Find dy/dx if y= 3^x

    Text Solution

    |

  12. Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x(1), x(2)...

    Text Solution

    |

  13. If A gt 0, c,d,u.v are non-zero constants and the graph of f(x)=abs(Ax...

    Text Solution

    |

  14. If f(x)=x^(3)+3x^(2)+4x+asinx+bcosx, forall x in R is a one-one fuctio...

    Text Solution

    |

  15. If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 ar...

    Text Solution

    |

  16. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  17. The complete set of values of a for which the function f(x)=tan^(-1)(x...

    Text Solution

    |

  18. The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(si...

    Text Solution

    |

  19. The domain of f(x)=sqrt(sin^(-1)(3x-4x^(3)))+sqrt(cos^(-1)x) is equal ...

    Text Solution

    |

  20. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |