Home
Class 12
MATHS
Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(...

Let `f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x`. Then the sum of the maximum and minimum values of f(x) is
(a)`pi`
(b)`pi/2`
(c)`2pi`
(d)`(3pi)/2`

A

`pi`

B

`pi/2`

C

`2pi`

D

`(3pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the maximum and minimum values of the function \( f(x) = \sin^{-1}(2x) + \cos^{-1}(2x) + \sec^{-1}(2x) \). ### Step 1: Determine the domain of the function 1. **For \( \sin^{-1}(2x) \)**: The argument \( 2x \) must be in the range \([-1, 1]\). Thus, we have: \[ -1 \leq 2x \leq 1 \implies -\frac{1}{2} \leq x \leq \frac{1}{2} \] 2. **For \( \cos^{-1}(2x) \)**: The argument \( 2x \) must also be in the range \([-1, 1]\), which gives the same condition: \[ -\frac{1}{2} \leq x \leq \frac{1}{2} \] 3. **For \( \sec^{-1}(2x) \)**: The argument \( 2x \) must satisfy \( |2x| \geq 1 \). Thus, we have: \[ 2x \leq -1 \quad \text{or} \quad 2x \geq 1 \implies x \leq -\frac{1}{2} \quad \text{or} \quad x \geq \frac{1}{2} \] 4. **Finding the intersection of the domains**: - From \( \sin^{-1} \) and \( \cos^{-1} \), we have \( -\frac{1}{2} \leq x \leq \frac{1}{2} \). - From \( \sec^{-1} \), we have \( x \leq -\frac{1}{2} \) or \( x \geq \frac{1}{2} \). - The only values that satisfy both conditions are \( x = -\frac{1}{2} \) and \( x = \frac{1}{2} \). ### Step 2: Evaluate the function at the endpoints of the domain 1. **At \( x = \frac{1}{2} \)**: \[ f\left(\frac{1}{2}\right) = \sin^{-1}(1) + \cos^{-1}(1) + \sec^{-1}(1) \] \[ = \frac{\pi}{2} + 0 + 0 = \frac{\pi}{2} \] 2. **At \( x = -\frac{1}{2} \)**: \[ f\left(-\frac{1}{2}\right) = \sin^{-1}(-1) + \cos^{-1}(-1) + \sec^{-1}(-1) \] \[ = -\frac{\pi}{2} + \pi + \pi = -\frac{\pi}{2} + 2\pi = \frac{3\pi}{2} \] ### Step 3: Find the maximum and minimum values - The minimum value of \( f(x) \) is \( \frac{\pi}{2} \) (at \( x = \frac{1}{2} \)). - The maximum value of \( f(x) \) is \( \frac{3\pi}{2} \) (at \( x = -\frac{1}{2} \)). ### Step 4: Calculate the sum of maximum and minimum values \[ \text{Sum} = \text{Maximum} + \text{Minimum} = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi \] ### Final Answer The sum of the maximum and minimum values of \( f(x) \) is \( 2\pi \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum value of f(x)=sinx+1/2cos2xin[0,pi/2]dot

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

The minimum value of f(x)= "sin"x, [(-pi)/(2),(pi)/(2)] is

Find the maximum and the minimum values of f(x)=sin3x+4,\ \ x in (-pi//2,\ pi//2) , if any.

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

Let f(x)=sinx+2cos^2x , x in [pi/6,(2pi)/3] , then maximum value of f(x) is

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| The range of f(x) is (a) [0,(pi)/(2)] (b) [0,(3pi)/(2)] (c) [0,(pi)/(4)] (d) [0,pi]

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f(x) be a polynominal with real coefficients such that f(x)=f'(x) ...

    Text Solution

    |

  2. Let A={1,2,3,4,5} and f:A rarr A be an into function such that f(x) ne...

    Text Solution

    |

  3. If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(199...

    Text Solution

    |

  4. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  5. Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-(x))dot Show that g(...

    Text Solution

    |

  6. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

    Text Solution

    |

  7. If f(x) is a real-valued function discontinuous at all integral points...

    Text Solution

    |

  8. A function f from integers to integers is defined as f(x)={n+3, n in ...

    Text Solution

    |

  9. If f:R->R and f(x)=sin(pi{x})/(x^4+3x^2+7), where {} is a fractional p...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Find dy/dx if y= 3^x

    Text Solution

    |

  12. Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x(1), x(2)...

    Text Solution

    |

  13. If A gt 0, c,d,u.v are non-zero constants and the graph of f(x)=abs(Ax...

    Text Solution

    |

  14. If f(x)=x^(3)+3x^(2)+4x+asinx+bcosx, forall x in R is a one-one fuctio...

    Text Solution

    |

  15. If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 ar...

    Text Solution

    |

  16. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  17. The complete set of values of a for which the function f(x)=tan^(-1)(x...

    Text Solution

    |

  18. The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(si...

    Text Solution

    |

  19. The domain of f(x)=sqrt(sin^(-1)(3x-4x^(3)))+sqrt(cos^(-1)x) is equal ...

    Text Solution

    |

  20. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |