Home
Class 12
MATHS
The domain of the function f(x)=sin^(-...

The domain of the function
`f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(sin^(2)x+sinx+1)` is

A

a) `(-infty, infty)`

B

b) `(-infty,-sqrt(2)] cup [sqrt(2), infty)`

C

c) `(-infty,-sqrt(2)] cup [sqrt(2),infty) cup {0}`

D

d) None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \[ f(x) = \sin^{-1}\left(\frac{1}{|x^2 - 1|}\right) + \frac{1}{\sqrt{\sin^2 x + \sin x + 1}} \] we need to ensure that both components of the function are defined. ### Step 1: Analyze the first term \( \sin^{-1}\left(\frac{1}{|x^2 - 1|}\right) \) The function \( \sin^{-1}(y) \) is defined for \( y \) in the interval \([-1, 1]\). Therefore, we need: \[ -\frac{1}{|x^2 - 1|} \leq 1 \quad \text{and} \quad \frac{1}{|x^2 - 1|} \geq 0 \] Since \(\frac{1}{|x^2 - 1|} \geq 0\) is always true when \( |x^2 - 1| > 0\), we only need to consider: \[ |x^2 - 1| \geq 1 \] ### Step 2: Solve the inequality \( |x^2 - 1| \geq 1 \) This leads to two cases: 1. \( x^2 - 1 \geq 1 \) 2. \( x^2 - 1 \leq -1 \) #### Case 1: \( x^2 - 1 \geq 1 \) \[ x^2 \geq 2 \implies x \leq -\sqrt{2} \quad \text{or} \quad x \geq \sqrt{2} \] #### Case 2: \( x^2 - 1 \leq -1 \) \[ x^2 \leq 0 \implies x = 0 \] ### Step 3: Combine the results from both cases From Case 1, we have: \[ x \in (-\infty, -\sqrt{2}] \cup [\sqrt{2}, \infty) \] From Case 2, we have: \[ x = 0 \] ### Step 4: Check the second term \( \frac{1}{\sqrt{\sin^2 x + \sin x + 1}} \) The expression \( \sin^2 x + \sin x + 1 \) is always positive because: - The minimum value of \( \sin^2 x \) is \( 0 \) (when \( \sin x = 0 \)). - The minimum value of \( \sin x \) is \( -1 \) (when \( \sin x = -1 \)). Thus, the minimum value of \( \sin^2 x + \sin x + 1 \) occurs when \( \sin x = -1 \): \[ \sin^2 x + \sin x + 1 = 0 + (-1) + 1 = 1 > 0 \] This means \( \frac{1}{\sqrt{\sin^2 x + \sin x + 1}} \) is always defined. ### Final Domain Combining both parts, the domain of \( f(x) \) is: \[ (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty) \cup \{0\} \] ### Conclusion Thus, the domain of the function \( f(x) \) is: \[ \boxed{(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty) \cup \{0\}} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=sin^(-1)(2x-3)

Domain of the function f(x)= sin^(- 1)(1+3x+2x^2)

Find the domain of the function: f(x)=(sin^(-1)x)/x

The domain of the function f(x)=sqrt(sin x-1) is

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

The domain of the function f(x)=(sin^(-1)(3-x))/("In"(|x|-2)) is

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function f(x)=sin^(-1)(2x-3) .

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f(x) be a polynominal with real coefficients such that f(x)=f'(x) ...

    Text Solution

    |

  2. Let A={1,2,3,4,5} and f:A rarr A be an into function such that f(x) ne...

    Text Solution

    |

  3. If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(199...

    Text Solution

    |

  4. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  5. Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-(x))dot Show that g(...

    Text Solution

    |

  6. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

    Text Solution

    |

  7. If f(x) is a real-valued function discontinuous at all integral points...

    Text Solution

    |

  8. A function f from integers to integers is defined as f(x)={n+3, n in ...

    Text Solution

    |

  9. If f:R->R and f(x)=sin(pi{x})/(x^4+3x^2+7), where {} is a fractional p...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Find dy/dx if y= 3^x

    Text Solution

    |

  12. Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x(1), x(2)...

    Text Solution

    |

  13. If A gt 0, c,d,u.v are non-zero constants and the graph of f(x)=abs(Ax...

    Text Solution

    |

  14. If f(x)=x^(3)+3x^(2)+4x+asinx+bcosx, forall x in R is a one-one fuctio...

    Text Solution

    |

  15. If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 ar...

    Text Solution

    |

  16. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  17. The complete set of values of a for which the function f(x)=tan^(-1)(x...

    Text Solution

    |

  18. The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(si...

    Text Solution

    |

  19. The domain of f(x)=sqrt(sin^(-1)(3x-4x^(3)))+sqrt(cos^(-1)x) is equal ...

    Text Solution

    |

  20. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |