Home
Class 12
MATHS
The parabola y=x^2+p x+q cuts the straig...

The parabola `y=x^2+p x+q` cuts the straight line `y=2x-3` at a point with abscissa 1. Then the value of `pa n dq` for which the distance between the vertex of the parabola and the x-axis is the minimum is `p=-1,q=-1` (b) `p=-2,q=0` `p=0,q=-2` (d) `p=3/2,q=-1/2`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|8 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

The parabola y=x^2+p x+q cuts the straight line y=2x-3 at a point with abscissa 1. Then the value of pa n dq for which the distance between the vertex of the parabola and the x-axis is the minimum is (a) p=-1,q=-1 (b) p=-2,q=0 (c) p=0,q=-2 (d) p=3/2,q=-1/2

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1

The value of p and q(p!=0,q!=0) for which p ,q are the roots of the equation x^2+p x+q=0 are (a) p=1,q=-2 (b) p=-1,q=-2 (c) p=-1,q=2 (d) p=1,q=2

The ordinates of points P and Q on the parabola y^2=12x are in the ration 1:2 . Find the locus of the point of intersection of the normals to the parabola at P and Q.

If the line y-sqrt3x+3=0 cuts the parabola y^2=x+2 at P and Q then AP.AQ is equal to

The value of p and q for which the function f(x)""={(sin(p+1)x+sinx)/x , x 0} is continuous for all x in R, are: (1) p=1/2, q=-3/2 (2) p=5/2, q=-1/2 (3) p=-3/2, q=1/2 (4) p=1/2, q=3/2

In the quadratic equation x^2+(p+i q)x+3i=0,p&q are real. If the sum of the squares of the roots is 8 then: p=3,q=-1 b. p=3,q=1 c. p=-3,q=-1 d. p=-3,q=1

If the difference of the roots of x^2-p x+q=0 is unity, then a) p^2+4q=1 b) p^2-4q=1 c) p^2+4q^2=(1+2q)^2 d) 4p^2+q^2=(1+2p)^2

If length of focal chord P Q is l , and p is the perpendicular distance of P Q from the vertex of the parabola, then prove that lprop1/(p^2)dot

A variable line through the point (p, q) cuts the x and y axes at A and B respectively. The lines through A and B parallel to y-axis and x-axis respectively meet at P . If the locus of P is 3x+2y-xy=0 , then (A) p=2, q=3 (B) p=3, q=2 (C) p=2, q=-3 (D) p=-3, q=-2