Home
Class 12
MATHS
Two curves C1: y=x^2-3\ a n d\ C2\ : y\ ...

Two curves `C_1: y=x^2-3\ a n d\ C_2\ : y\ k x^2\ ,\ k in R` intersect each other at two different points. The tangent drawn to `C_2` at one of the points of intersection `A\ -=` `(a , y_1),(a >0)` meets `C_1` again at `B\ (1, y_2)\ (y_1!=y_2)dot` The value of `' a '` is 1 (b) 3 (c) 5 (d) 7

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|12 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

Find the point of intersection of the tangents drawn to the curve x^2y=1-y at the points where it is intersected by the curve x y=1-ydot

The circle with equation x^2 +y^2 = 1 intersects the line y= 7x+5 at two distinct points A and B. Let C be the point at which the positive x-axis intersects the circle. The angle ACB is

The parabolas C_(1) : y^(2) = 4a (x - a) and C_(2) : y^(2) = -4a(x - k) intersect at two distinct points A and B. If the slope of the tangent at A on C_1 is same as the slope of the normal at B on C_(2) , then the value of k is equal to

If the lines joining the points of intersection of the curve 4x^2+9y+18 x y=1 and the line y=2x+c to the origin are equally inclined to the y-axis, the c is: -1 (b) 1/3 (c) 2/3 (d) -1/2

If the lines joining the points of intersection of the curve 4x^2+9y+18 x y=1 and the line y=2x+c to the origin are equally inclined to the y-axis, the c is: -1 (b) 1/3 (c) 2/3 (d) -1/2

Let x ,\ y be two variables and x >0,\ \ x y=1 , then minimum value of x+y is (a) 1 (b) 2 (c) 2 1/2 (d) 3 1/3

The curve x y=c ,(c >0), and the circle x^2+y^2=1 touch at two points. Then the distance between the point of contacts is 1 (b) 2 (c) 2sqrt(2) (d) none of these

Two parabolas C and D intersect at two different points, where C is y =x^2-3 and D is y=kx^2 . The intersection at which the x value is positive is designated Point A, and x=a at this intersection the tangent line l at A to the curve D intersects curve C at point B , other than A. IF x-value of point B is 1, then a equal to

If (x/a)+(y/b)=1 and (x/c)+(y/d)=1 intersect the axes at four concylic points and a^2+c^2=b^2+d^2, then these lines can intersect at, (a , b , c , d >0)

The number of points of intersection of two curves y=2sinxa n dy=5x^2+2x+3i s 0 b. 1 c. 2 d. oo