Home
Class 12
MATHS
Suppose lim(x to 0)(int(0)^(x)(t^(2) dt...

Suppose `lim_(x to 0)(int_(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sinx)=l`,
`p in N, p ge 2,a gt gt 0,rgt 0 and b ne 0`
If `p=2 and a=9 and l` exists , then the value of `l` is equal to

A

`(3)/(2)`

B

`(2)/(3)`

C

`(1)/(3)`

D

`(7)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem, we will follow these steps systematically: ### Step 1: Set up the limit expression We start with the limit expression given in the problem: \[ \lim_{x \to 0} \frac{\int_{0}^{x} t^2 \, dt}{(9 + t^r)^{1/2}} \div (bx - \sin x) \] Given that \( p = 2 \) and \( a = 9 \), we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\int_{0}^{x} t^2 \, dt}{(9 + t^r)^{1/2}} \div (bx - \sin x) \] ### Step 2: Evaluate the integral The integral \(\int_{0}^{x} t^2 \, dt\) can be computed as: \[ \int_{0}^{x} t^2 \, dt = \left[ \frac{t^3}{3} \right]_{0}^{x} = \frac{x^3}{3} \] ### Step 3: Substitute the integral back into the limit Substituting the result of the integral back into the limit, we have: \[ \lim_{x \to 0} \frac{\frac{x^3}{3}}{(9 + x^r)^{1/2}} \div (bx - \sin x) \] ### Step 4: Simplify the denominator Using the Taylor series expansion for \(\sin x\) around \(x = 0\): \[ \sin x \approx x - \frac{x^3}{6} + O(x^5) \] Thus, we can write: \[ bx - \sin x \approx (b - 1)x + \frac{x^3}{6} \] ### Step 5: Rewrite the limit Now, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\frac{x^3}{3}}{(9 + x^r)^{1/2} \cdot ((b - 1)x + \frac{x^3}{6})} \] ### Step 6: Evaluate the limit As \(x \to 0\), the term \((9 + x^r)^{1/2}\) approaches \(3\) (since \(9 + 0 = 9\)), and we have: \[ \lim_{x \to 0} \frac{\frac{x^3}{3}}{3 \cdot ((b - 1)x + \frac{x^3}{6})} \] This simplifies to: \[ \lim_{x \to 0} \frac{x^3}{9((b - 1)x + \frac{x^3}{6})} \] ### Step 7: Apply L'Hôpital's Rule Since we have a \(0/0\) form, we can apply L'Hôpital's Rule: Differentiate the numerator and denominator: - The derivative of the numerator \(x^3\) is \(3x^2\). - The derivative of the denominator \(9((b - 1)x + \frac{x^3}{6})\) is \(9(b - 1) + \frac{9}{2}x^2\). Thus, we have: \[ \lim_{x \to 0} \frac{3x^2}{9(b - 1) + \frac{9}{2}x^2} \] ### Step 8: Evaluate the limit again As \(x \to 0\): \[ \lim_{x \to 0} \frac{3x^2}{9(b - 1)} = 0 \] This indicates that \(b - 1\) must equal \(0\) for the limit \(L\) to exist, which gives \(b = 1\). ### Step 9: Final evaluation Substituting \(b = 1\) back into the limit, we can evaluate: \[ \lim_{x \to 0} \frac{x^3}{9 \cdot \frac{x^3}{6}} = \frac{6}{9} = \frac{2}{3} \] ### Conclusion Thus, the value of \(l\) is: \[ \boxed{\frac{2}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Suppose lim_(xrarr0)(int_(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sinx)=l , p in N, p ge 2,a gt gt 0,rgt 0 and b ne 0 If p=3 and l=1, then the value of 'a' is equal to

Suppose lim_(xrarr0) (int_(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sinx)=l , p in N, p ge 2,a gt gt 0,rgt 0 and b ne 0 If l exists and is non- zero, then

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(x to 0)(int_(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

Given that lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :