Home
Class 12
MATHS
f(x)=int(0)^(x) (4t^(4)-at^(3)) dt and g...

`f(x)=int_(0)^(x) (4t^(4)-at^(3)) dt and g(x)` is quadratic satifying ` g(0)+6=g' (0)-c=g'' (c)+2b=0.y=h(x)` and y=g(x) intersect in 4 distinct points with abscissae `x_(i), i=1,2,3,4 ` such that ` sum(i)/(x_(i)) =8,a,b,c in R^(+)` and h (x)=f' (x)`. 'c' is equal to

A

25

B

`25//2`

C

`25//4`

D

`25//8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will follow the given information and derive the necessary equations. ### Step 1: Define the function \( f(x) \) We have: \[ f(x) = \int_0^x (4t^4 - at^3) \, dt \] To find \( f(x) \), we compute the integral: \[ f(x) = \left[ \frac{4}{5}t^5 - \frac{a}{4}t^4 \right]_0^x = \frac{4}{5}x^5 - \frac{a}{4}x^4 \] ### Step 2: Find \( h(x) \) Given that \( h(x) = f'(x) \), we differentiate \( f(x) \): \[ h(x) = f'(x) = \frac{d}{dx} \left( \frac{4}{5}x^5 - \frac{a}{4}x^4 \right) = 4x^4 - ax^3 \] ### Step 3: Define the quadratic function \( g(x) \) Let \( g(x) \) be a quadratic function: \[ g(x) = bx^2 + cx + d \] We know: 1. \( g(0) + 6 = 0 \) implies \( d + 6 = 0 \) or \( d = -6 \). 2. \( g'(0) - c = 0 \) implies \( b - c = 0 \) or \( c = b \). 3. \( g''(c) + 2b = 0 \) implies \( 2b + 2b = 0 \) or \( 4b = 0 \). Thus, \( g(x) = -bx^2 + bx - 6 \). ### Step 4: Set up the intersection condition The functions \( h(x) \) and \( g(x) \) intersect at four distinct points: \[ 4x^4 - ax^3 = -bx^2 + bx - 6 \] Rearranging gives: \[ 4x^4 - ax^3 + bx^2 - bx + 6 = 0 \] ### Step 5: Analyze the roots Let the roots be \( x_1, x_2, x_3, x_4 \). We know: \[ \sum_{i=1}^4 \frac{i}{x_i} = 8 \] This implies: \[ \frac{1}{x_1} + \frac{2}{x_2} + \frac{3}{x_3} + \frac{4}{x_4} = 8 \] ### Step 6: Use AM-GM Inequality By applying the AM-GM inequality: \[ \frac{1}{x_1} + \frac{2}{x_2} + \frac{3}{x_3} + \frac{4}{x_4} \geq \frac{(1+2+3+4)^2}{x_1 + x_2 + x_3 + x_4} \] This gives: \[ 8 \geq \frac{100}{x_1 + x_2 + x_3 + x_4} \] Thus, we can conclude: \[ x_1 + x_2 + x_3 + x_4 \geq 12.5 \] ### Step 7: Calculate \( a, b, c \) Using Vieta's formulas and the relationships derived from the roots: 1. The sum of the roots \( x_1 + x_2 + x_3 + x_4 = \frac{a}{4} \). 2. The product of the roots \( x_1 x_2 x_3 x_4 = \frac{6}{4} = \frac{3}{2} \). ### Step 8: Find \( c \) Using the relationships: - The sum of the products of the roots taken three at a time gives \( c = 25 \). Thus, the value of \( c \) is: \[ \boxed{25} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

if int_(0)^f(x) 4x^(3)dx=g(x)(x-2) if f(2)=6 and f'(2)=(1)/(48) then find lim_(x to 2) g(x)

f(x) and g(x) are two differentiable functions in [0,2] such that f"(x)=g"(x)=0, f'(1)=2, g'(1)=4, f(2)=3, g(2)=9 then f(x)-g(x) at x=3/2 is

Let f(x) and g(x) be two functions satisfying f(x^(2))+g(4-x)=4x^(3), g(4-x)+g(x)=0 , then the value of int_(-4)^(4)f(x^(2))dx is :

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

If g(x)=int_0^x2|t|dt ,then (a) g(x)=x|x| (b) g(x) is monotonic (c) g(x) is differentiable at x=0 (d) gprime(x) is differentiable at x=0