Home
Class 12
MATHS
Letf(theta) =int(0)^(1) (x+ sin theta )^...

Let`f(theta) =int_(0)^(1) (x+ sin theta )^(2) dx and g(theta)=int_(0)^(1)(x+ cos theta )^(2) dx`
where ` theta in [0,2 pi]`. The quantity `f (theta) -g(theta), AA theta ` in the interval given in column I, is

Text Solution

Verified by Experts

The correct Answer is:
`(A) rarr(q),(B) rarr(r),(C) rarr(s),(D) rarr(p)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Find the number points where f (theta) = int _(-1)^(1) (sin theta dx )/(1-2x cos theta + x ^(2)) is discontinous where thetain [0, 2pi].

For theta>pi/3 , the value of f(theta)=sec^2theta+cos^2theta always lies in the interval

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

Let f(x) = int_(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

int_(0)^(1) (sin theta (cos^(2) theta- cos^(2) pi//5) (cos^(2) theta - cos^(2) 2 pi //5))/(sin 5 theta)d theta

(f) Evaluate int_(0)^( pi)int_(0)^( a(1+cos theta))rd theta dr

Consider the function f(theta)=int_(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(sqrt(1-x^(2)))dx , where 0le theta le (pi)/2 , then

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

int_(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in I ) is equal to

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )