Home
Class 12
MATHS
Evaluate the following : sin ^(2) ( co...

Evaluate the following :
`sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) ` .

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) \), we will follow these steps: ### Step 1: Evaluate \( \cos^{-1}(1/2) \) Let \( A = \cos^{-1}(1/2) \). This means \( \cos A = 1/2 \). We know that: \[ \cos 60^\circ = \frac{1}{2} \] Thus, \( A = 60^\circ \). ### Step 2: Find \( \sin^2(\cos^{-1}(1/2)) \) Using the identity \( \sin^2 A + \cos^2 A = 1 \), we can find \( \sin A \): \[ \sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - (1/2)^2} = \sqrt{1 - 1/4} = \sqrt{3/4} = \frac{\sqrt{3}}{2} \] Now, we calculate \( \sin^2 A \): \[ \sin^2 A = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 3: Evaluate \( \sin^{-1}(1/3) \) Let \( B = \sin^{-1}(1/3) \). This means \( \sin B = 1/3 \). ### Step 4: Find \( \cos^2(\sin^{-1}(1/3)) \) Using the identity \( \sin^2 B + \cos^2 B = 1 \), we can find \( \cos B \): \[ \cos B = \sqrt{1 - \sin^2 B} = \sqrt{1 - (1/3)^2} = \sqrt{1 - 1/9} = \sqrt{8/9} = \frac{\sqrt{8}}{3} \] Now, we calculate \( \cos^2 B \): \[ \cos^2 B = \left(\frac{\sqrt{8}}{3}\right)^2 = \frac{8}{9} \] ### Step 5: Combine the results Now we can combine the results from Step 2 and Step 4: \[ \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) = \frac{3}{4} + \frac{8}{9} \] ### Step 6: Find a common denominator and add The common denominator of 4 and 9 is 36. We convert each fraction: \[ \frac{3}{4} = \frac{27}{36}, \quad \frac{8}{9} = \frac{32}{36} \] Now, we add them: \[ \frac{27}{36} + \frac{32}{36} = \frac{59}{36} \] ### Final Answer Thus, the value of the expression is: \[ \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) = \frac{59}{36} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: sin^(-1)(sinpi/4) (ii) cos^(-1)(cos2pi/3) tan^(-1)(tanpi/3)

For the principal values, evaluate each of the following : (i) cos^(-1) (1/2)+2sin^(-1) (1/2) (ii) cos^(-1)(1/2)-2sin^(-1)(-1/2)

Evaluate each of the following: sin^(-1)(sinpi/3) (ii) cos^(-1)(cos(2pi)/3)

Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

Evaluate the following:(i) sin(1/2\ cos^(-1)(4/5)) (ii) sin(2\ tan^(-1)(2/3))+cos(tan^(-1)sqrt(3))

For the principal values, evaluate each of the following : (i) sin^(-1)(-1/2)+2cos^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(-(sqrt(3))/2)+cos^(-1)((sqrt(3))/2)

For the principal values, evaluate the following: sin^(-1)(-(sqrt(3))/2)+cos e c^(-1)(-2/(sqrt(3)))

Evaluate each of the following: sin^(-1)(sinpi/3) (ii) cos^(-1)(cos(2pi)/3) (iii) tan^(-1)(tanpi/4)

Find the principal value of each of the following: (i) sin^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(cos (pi/3)) (iii) sin^(-1)((sqrt(3)-1)/(2sqrt(2)))

For the principal values, evaluate each of the following: (i) tan^(-1){2cos(2sin^(-1)(1/2))} , (ii) "cot"[sin^(-1){cos(tan^(-1)1)}]