Home
Class 12
MATHS
Statement I sin ^(-1)(1/sqrte) gt tan^(...

Statement I `sin ^(-1)(1/sqrte) gt tan^(-1)(1/sqrtpi)`
Statement II `sin^(-1) x gt tan^(-1) y " for " x gt y , AA x, y in (0,1)`

A

Statement I is True, Statement II is True, Statement II is a correct explanation for statement I

B

Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I

C

Statement I is True, Statement II is False

D

Statement I is False, Statement II is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Statement I: We need to verify if \( \sin^{-1}\left(\frac{1}{\sqrt{e}}\right) > \tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right) \). 1. **Calculate \( \sin^{-1}\left(\frac{1}{\sqrt{e}}\right) \)**: - We know that \( e \approx 2.718 \), so \( \sqrt{e} \approx \sqrt{2.718} \approx 1.6487 \). - Therefore, \( \frac{1}{\sqrt{e}} \approx \frac{1}{1.6487} \approx 0.607 \). - Now, we find \( \sin^{-1}(0.607) \). The value of \( \sin^{-1}(0.607) \) is approximately \( 0.6435 \) radians (or about \( 36.87^\circ \)). 2. **Calculate \( \tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right) \)**: - We know that \( \pi \approx 3.14 \), so \( \sqrt{\pi} \approx \sqrt{3.14} \approx 1.772 \). - Therefore, \( \frac{1}{\sqrt{\pi}} \approx \frac{1}{1.772} \approx 0.564 \). - Now, we find \( \tan^{-1}(0.564) \). The value of \( \tan^{-1}(0.564) \) is approximately \( 0.515 \) radians (or about \( 29.74^\circ \)). 3. **Compare the two values**: - We have \( \sin^{-1}\left(\frac{1}{\sqrt{e}}\right) \approx 0.6435 \) and \( \tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right) \approx 0.515 \). - Since \( 0.6435 > 0.515 \), we conclude that \( \sin^{-1}\left(\frac{1}{\sqrt{e}}\right) > \tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right) \). Thus, **Statement I is true**. ### Statement II: We need to verify if \( \sin^{-1}(x) > \tan^{-1}(y) \) for \( x > y \) where \( x, y \in (0, 1) \). 1. **Understanding the functions**: - Both \( \sin^{-1}(x) \) and \( \tan^{-1}(y) \) are increasing functions in the interval \( (0, 1) \). - This means that if \( x_1 > x_2 \), then \( \sin^{-1}(x_1) > \sin^{-1}(x_2) \) and similarly for \( \tan^{-1} \). 2. **Applying the property of increasing functions**: - Given \( x > y \), since both functions are increasing, we can conclude that \( \sin^{-1}(x) > \sin^{-1}(y) \) and \( \tan^{-1}(x) > \tan^{-1}(y) \). 3. **Conclusion**: - Therefore, if \( x > y \), it follows that \( \sin^{-1}(x) > \tan^{-1}(y) \) holds true. Thus, **Statement II is also true**. ### Final Conclusion: Both statements are true. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1) x gt tan^(-1) x

Solver sin^(-1) x gt -1

Statement I cosec^(-1)(1/2 +1/sqrt2) gt sec^(-1)(1/2+1/sqrt2) Statement II cosec^(-1) x gt sec^(-1) x", if " 1 le x lt sqrt2

Solve tan^(-1) x gt cot^(-1) x

solve sin^(-1) (sin 5) gt x^(2) - 4x

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1

If cos^(-1)x gt sin^(-1) x , then

If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0 , then x = ?

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x