Home
Class 12
MATHS
Statement I cosec^(-1)(1/2 +1/sqrt2) gt...

Statement I `cosec^(-1)(1/2 +1/sqrt2) gt sec^(-1)(1/2+1/sqrt2)`
Statement II `cosec^(-1) x gt sec^(-1) x", if " 1 le x lt sqrt2`

A

Statement I is True, Statement II is True, Statement II is a correct explanation for statement I

B

Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I

C

Statement I is True, Statement II is False

D

Statement I is False, Statement II is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Step 1: Understand the Statements **Statement I:** \[ \csc^{-1}\left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right) > \sec^{-1}\left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right) \] **Statement II:** \[ \csc^{-1}(x) > \sec^{-1}(x) \quad \text{for } 1 \leq x < \sqrt{2} \] ### Step 2: Evaluate the Expression \(\frac{1}{2} + \frac{1}{\sqrt{2}}\) First, we calculate the value of \(x\): \[ x = \frac{1}{2} + \frac{1}{\sqrt{2}} = \frac{1}{2} + \frac{\sqrt{2}}{2} = \frac{1 + \sqrt{2}}{2} \] ### Step 3: Check the Range of \(x\) Next, we need to check if \(x\) lies in the interval \([1, \sqrt{2})\). 1. **Check if \(x \geq 1\)**: \[ \frac{1 + \sqrt{2}}{2} \geq 1 \implies 1 + \sqrt{2} \geq 2 \implies \sqrt{2} \geq 1 \quad \text{(True)} \] 2. **Check if \(x < \sqrt{2}\)**: \[ \frac{1 + \sqrt{2}}{2} < \sqrt{2} \implies 1 + \sqrt{2} < 2\sqrt{2} \implies 1 < \sqrt{2} \quad \text{(True)} \] Thus, \(x = \frac{1 + \sqrt{2}}{2}\) lies in the interval \([1, \sqrt{2})\). ### Step 4: Analyze the Functions \(\csc^{-1}(x)\) and \(\sec^{-1}(x)\) - The function \(\csc^{-1}(x)\) is defined for \(x \geq 1\) and is a decreasing function. - The function \(\sec^{-1}(x)\) is defined for \(x \geq 1\) and is an increasing function. ### Step 5: Compare \(\csc^{-1}(x)\) and \(\sec^{-1}(x)\) Since \(\csc^{-1}(x)\) is decreasing and \(\sec^{-1}(x)\) is increasing, for \(1 \leq x < \sqrt{2}\), it follows that: \[ \csc^{-1}(x) > \sec^{-1}(x) \] ### Step 6: Conclusion on Statement II Since \(x = \frac{1 + \sqrt{2}}{2}\) lies in the interval \([1, \sqrt{2})\), we conclude that: \[ \csc^{-1}\left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right) > \sec^{-1}\left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right) \] Thus, **Statement I is true** and **Statement II correctly explains Statement I**. ### Final Answer Both statements are true, and Statement II correctly explains Statement I. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

cosec"^(-1)(-sqrt(2))

Solve sec^(-1) x gt cosec^(-1) x

sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

Find the value of : cosec[sec^(-1)(sqrt(2))+cot^(-1)(1)]

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1

Match the principal values of cos^(-1) ( 8 x^(4) - 8 x^(2) + 1) given in column I with the corresponding intervals of x given in column II . For which it holds . {:(,"Column I",,"Column II"),(A,4 cos^(-1) x,p.,0 le x le 1/sqrt2),(B,4 cos^(-1)x - 2 pi,q.,1/sqrt2 le x le 1),(C,2pi - 4 cos^(-1)x,r.,-1le x le - 1/sqrt2),(D,4pi - 4 cos^(-1) x,s.,-1/sqrt2 le x le 0):}

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is