Home
Class 12
MATHS
lf (1 +x)^(10) = a0 +a1x + a2x^2++a(10)x...

lf `(1 +x)^(10) = a_0 +a_1x + a_2x^2++a_(10)x^(10)`, then value of `(a_0-a_2+a_4-a_6+a_8-a_(10))^2+(a_1-a_3+a_5-a_7+a_9)^2` is

A

`2^(9)`

B

`3^(9)`

C

`2^(10)`

D

`3^(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a_0 - a_2 + a_4 - a_6 + a_8 - a_{10})^2 + (a_1 - a_3 + a_5 - a_7 + a_9)^2\) where \( (1 + x)^{10} = a_0 + a_1x + a_2x^2 + \ldots + a_{10}x^{10} \). ### Step 1: Identify the coefficients From the binomial theorem, we know that: \[ (1 + x)^{10} = \sum_{k=0}^{10} \binom{10}{k} x^k \] Thus, the coefficients are: - \( a_k = \binom{10}{k} \) ### Step 2: Calculate \( a_0, a_2, a_4, a_6, a_8, a_{10} \) Using the binomial coefficients: - \( a_0 = \binom{10}{0} = 1 \) - \( a_2 = \binom{10}{2} = 45 \) - \( a_4 = \binom{10}{4} = 210 \) - \( a_6 = \binom{10}{6} = 210 \) - \( a_8 = \binom{10}{8} = 45 \) - \( a_{10} = \binom{10}{10} = 1 \) ### Step 3: Calculate \( a_0 - a_2 + a_4 - a_6 + a_8 - a_{10} \) Now we compute: \[ a_0 - a_2 + a_4 - a_6 + a_8 - a_{10} = 1 - 45 + 210 - 210 + 45 - 1 \] Calculating step-by-step: - \( 1 - 45 = -44 \) - \( -44 + 210 = 166 \) - \( 166 - 210 = -44 \) - \( -44 + 45 = 1 \) - \( 1 - 1 = 0 \) So, \( a_0 - a_2 + a_4 - a_6 + a_8 - a_{10} = 0 \). ### Step 4: Calculate \( a_1, a_3, a_5, a_7, a_9 \) Next, we calculate: - \( a_1 = \binom{10}{1} = 10 \) - \( a_3 = \binom{10}{3} = 120 \) - \( a_5 = \binom{10}{5} = 252 \) - \( a_7 = \binom{10}{7} = 120 \) - \( a_9 = \binom{10}{9} = 10 \) ### Step 5: Calculate \( a_1 - a_3 + a_5 - a_7 + a_9 \) Now we compute: \[ a_1 - a_3 + a_5 - a_7 + a_9 = 10 - 120 + 252 - 120 + 10 \] Calculating step-by-step: - \( 10 - 120 = -110 \) - \( -110 + 252 = 142 \) - \( 142 - 120 = 22 \) - \( 22 + 10 = 32 \) So, \( a_1 - a_3 + a_5 - a_7 + a_9 = 32 \). ### Step 6: Calculate the final expression Now we need to compute: \[ (a_0 - a_2 + a_4 - a_6 + a_8 - a_{10})^2 + (a_1 - a_3 + a_5 - a_7 + a_9)^2 \] Substituting the values we found: \[ 0^2 + 32^2 = 0 + 1024 = 1024 \] ### Final Answer Thus, the value is: \[ \boxed{1024} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

If (1+x-2x^2)^6=1+a_1x+a_2x^(2)++a_(12)x^(12), then find the value of a_2+a_4+a_6++a_(12)dot

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x^(2n), find the value of a_0+a_3+a_6++ ,n in Ndot

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3++a_(40)x^(40), then find the value of a_1+a_3+a_5++a_(39)dot

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x_(2n), find the value of a_0+a_6++ ,n in Ndot

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1+x-2x^2)^(6) = 1 + a_(1) x + a_(2) x^(2) + ... + a_(12) x^(12) , then find a_2+ a_4 + ... + a_12

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then