Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x C(2) x^(2...

If `(1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n)`, then
the sum `C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1))` is equal to

A

`n . 2^(n)`

B

`n . 2^(n-1)`

C

`n . 2^(n-2)`

D

`n. 2^(n-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( S = C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \ldots + (C_0 + C_1 + \ldots + C_{n-1}) \). ### Step-by-Step Solution: 1. **Understanding the Terms**: The given expression can be rewritten as: \[ S = C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \ldots + (C_0 + C_1 + \ldots + C_{n-1}) \] Each term in this sum is a cumulative sum of the binomial coefficients. 2. **Identifying the General Term**: The \( r \)-th term in the sum can be expressed as: \[ C_0 + C_1 + C_2 + \ldots + C_r \] for \( r = 0, 1, 2, \ldots, n-1 \). 3. **Counting the Contributions**: - \( C_0 \) appears in all \( n \) terms. - \( C_1 \) appears in \( n-1 \) terms. - \( C_2 \) appears in \( n-2 \) terms. - Continuing this pattern, \( C_{n-1} \) appears in \( 1 \) term. 4. **Expressing the Sum**: The total sum can be expressed as: \[ S = nC_0 + (n-1)C_1 + (n-2)C_2 + \ldots + 1 \cdot C_{n-1} \] 5. **Using Binomial Coefficient Properties**: We can express this sum in summation notation: \[ S = \sum_{r=0}^{n-1} (n-r) C_r \] 6. **Splitting the Summation**: This can be split into two separate sums: \[ S = n \sum_{r=0}^{n-1} C_r - \sum_{r=0}^{n-1} r C_r \] 7. **Calculating the First Sum**: The first sum \( \sum_{r=0}^{n-1} C_r \) is known to be: \[ \sum_{r=0}^{n-1} C_r = 2^{n-1} \] 8. **Calculating the Second Sum**: The second sum \( \sum_{r=0}^{n-1} r C_r \) can be calculated using the identity: \[ \sum_{r=0}^{n} r C_r = n \cdot 2^{n-1} \] Therefore, for \( n-1 \): \[ \sum_{r=0}^{n-1} r C_r = (n-1) \cdot 2^{n-2} \] 9. **Substituting Back**: Now substituting back into the expression for \( S \): \[ S = n \cdot 2^{n-1} - (n-1) \cdot 2^{n-2} \] 10. **Simplifying**: \[ S = n \cdot 2^{n-1} - \frac{(n-1)}{2} \cdot 2^{n-1} = \left(n - \frac{(n-1)}{2}\right) \cdot 2^{n-1} \] \[ S = \left(\frac{2n - (n-1)}{2}\right) \cdot 2^{n-1} = \left(\frac{n + 1}{2}\right) \cdot 2^{n-1} \] 11. **Final Result**: Therefore, the final result for the sum is: \[ S = n \cdot 2^{n-1} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .