Home
Class 12
MATHS
If cr=ncr then (C1)/2-(C2)/3+(C3)/4-....

If `c_r=nc_r` then `(C_1)/2-(C_2)/3+(C_3)/4-...........-(C_100)/101` is equal to

A

`C_(1)`

B

`C_(2)`

C

`C_(3)`

D

`C_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{C_1}{2} - \frac{C_2}{3} + \frac{C_3}{4} - \ldots - \frac{C_{100}}{101} \] where \(C_r\) represents the binomial coefficient \(\binom{100}{r}\). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficient**: We know that \(C_r = \binom{100}{r}\), which represents the coefficients in the expansion of \((1 + x)^{100}\). 2. **Consider the Binomial Expansion**: The binomial expansion of \((1 - x)^{100}\) is given by: \[ (1 - x)^{100} = \sum_{r=0}^{100} \binom{100}{r} (-x)^r \] This expands to: \[ 1 - \binom{100}{1} x + \binom{100}{2} x^2 - \binom{100}{3} x^3 + \ldots + (-1)^{100} x^{100} \] 3. **Integrate the Expansion**: We will integrate the expansion from \(0\) to \(1\): \[ \int_0^1 (1 - x)^{100} \, dx \] 4. **Calculating the Integral**: The integral can be calculated as follows: \[ \int (1 - x)^{100} \, dx = -\frac{(1 - x)^{101}}{101} + C \] Evaluating from \(0\) to \(1\): \[ \left[-\frac{(1 - x)^{101}}{101}\right]_0^1 = \left[-\frac{0^{101}}{101}\right] - \left[-\frac{1^{101}}{101}\right] = 0 + \frac{1}{101} = \frac{1}{101} \] 5. **Setting Up the Result**: The integral also corresponds to the sum of the series: \[ \int_0^1 (1 - x)^{100} \, dx = \sum_{r=0}^{100} \binom{100}{r} \frac{(-1)^r}{r+1} \] This means: \[ \frac{C_0}{1} - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \ldots + (-1)^{100} \frac{C_{100}}{101} = \frac{1}{101} \] 6. **Extracting the Required Expression**: We need to isolate the expression: \[ -\left(\frac{C_1}{2} - \frac{C_2}{3} + \frac{C_3}{4} - \ldots - \frac{C_{100}}{101}\right) \] Rearranging gives: \[ C_0 - \left(\frac{C_1}{2} - \frac{C_2}{3} + \frac{C_3}{4} - \ldots - \frac{C_{100}}{101}\right) = \frac{1}{101} \] 7. **Finding \(C_0\)**: Here, \(C_0 = \binom{100}{0} = 1\). 8. **Final Calculation**: Thus, we have: \[ 1 - \left(\frac{C_1}{2} - \frac{C_2}{3} + \frac{C_3}{4} - \ldots - \frac{C_{100}}{101}\right) = \frac{1}{101} \] Rearranging gives: \[ \frac{C_1}{2} - \frac{C_2}{3} + \frac{C_3}{4} - \ldots - \frac{C_{100}}{101} = 1 - \frac{1}{101} = \frac{100}{101} \] ### Conclusion: The value of the expression is: \[ \frac{100}{101} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

If nger , then ""^(r)C_(r)+""^(r+1)C_(r)+""^(r+2)C_(r)+......+""^(n)C_(r) is equal to

Let C_(1), C_(2), C_(3) … are the usual binomial coefficients where C_(r )= .^(n)C_(r ) . Let S=C_(1)+2C_(2)+3C_(3)+…+nC_(n) , then S is equal to

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

Find the sum C_0-C_2+C_4-C_6+ ......... ,where C_r=^n C_r .

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r) is equal to

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

value of the expression (b-c)/(r_(1))+(c-a)/r_(2)+(a-b)/r_(3) is equal to