Home
Class 12
MATHS
The sum sum(r=0)^n (r+1) (Cr)^2 is equal...

The sum `sum_(r=0)^n (r+1) (C_r)^2` is equal to :

A

`((n+2)(2n -1)!)/(n!(n-1)!)`

B

`((n+2)(2n+1)!)/(n!(n-1)!)`

C

`((n+2)(2n+1)!)/(n!(n+1)!)`

D

`((n+2)(2n-1)!)/(n!(n+1)!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum \( S = \sum_{r=0}^{n} (r+1) \binom{n}{r}^2 \), we can follow these steps: ### Step 1: Rewrite the Sum We can express the term \( (r+1) \) as \( r + 1 \): \[ S = \sum_{r=0}^{n} (r+1) \binom{n}{r}^2 = \sum_{r=0}^{n} r \binom{n}{r}^2 + \sum_{r=0}^{n} \binom{n}{r}^2 \] ### Step 2: Simplify the First Sum The first part \( \sum_{r=0}^{n} r \binom{n}{r}^2 \) can be simplified using the identity \( r \binom{n}{r} = n \binom{n-1}{r-1} \): \[ \sum_{r=0}^{n} r \binom{n}{r}^2 = n \sum_{r=1}^{n} \binom{n-1}{r-1} \binom{n}{r} = n \sum_{r=0}^{n-1} \binom{n-1}{r} \binom{n}{r+1} \] ### Step 3: Use Vandermonde's Identity Using Vandermonde's identity, we have: \[ \sum_{r=0}^{k} \binom{m}{r} \binom{n}{k-r} = \binom{m+n}{k} \] Applying this identity, we get: \[ \sum_{r=0}^{n-1} \binom{n-1}{r} \binom{n}{r+1} = \binom{2n-1}{n} \] Thus, \[ \sum_{r=0}^{n} r \binom{n}{r}^2 = n \binom{2n-1}{n} \] ### Step 4: Simplify the Second Sum The second part \( \sum_{r=0}^{n} \binom{n}{r}^2 \) can be simplified using the identity: \[ \sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n} \] ### Step 5: Combine the Results Now we can combine the results from Step 3 and Step 4: \[ S = n \binom{2n-1}{n} + \binom{2n}{n} \] ### Final Result Thus, the sum \( S \) can be expressed as: \[ S = n \binom{2n-1}{n} + \binom{2n}{n} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

sum_(r=1)^n r (n-r +1) is equal to :

sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r) is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

sum_(r=0)^m .^(n+r)C_n is equal to

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

sum_(r=1)^n r(n-r) is equal to :