Home
Class 12
MATHS
The last two digits of the number 19^(9...

The last two digits of the number ` 19^(9^(4))`is

Text Solution

AI Generated Solution

The correct Answer is:
To find the last two digits of the number \( 19^{9^4} \), we can use the concept of modular arithmetic, specifically calculating \( 19^{9^4} \mod 100 \). ### Step-by-step solution: 1. **Rewrite the expression**: We want to find \( 19^{9^4} \mod 100 \). 2. **Use the Binomial Theorem**: We can express \( 19 \) as \( 20 - 1 \). Therefore, we have: \[ 19^{9^4} = (20 - 1)^{9^4} \] 3. **Apply the Binomial Expansion**: Using the binomial theorem, we expand \( (20 - 1)^{9^4} \): \[ (20 - 1)^{9^4} = \sum_{k=0}^{9^4} \binom{9^4}{k} 20^k (-1)^{9^4-k} \] 4. **Focus on the last two digits**: We are interested in the last two digits, which means we need to consider the terms of the expansion that contribute to \( \mod 100 \). 5. **Identify significant terms**: The terms where \( k = 0 \) and \( k = 1 \) will be significant: - For \( k = 0 \): \[ \binom{9^4}{0} 20^0 (-1)^{9^4} = 1 \cdot 1 \cdot (-1) = -1 \] - For \( k = 1 \): \[ \binom{9^4}{1} 20^1 (-1)^{9^4-1} = 9^4 \cdot 20 \cdot 1 = 9^4 \cdot 20 \] 6. **Calculate \( 9^4 \mod 5 \) and \( 9^4 \mod 4 \)**: - \( 9 \equiv 4 \mod 5 \) so \( 9^4 \equiv 4^4 \equiv 1 \mod 5 \). - \( 9 \equiv 1 \mod 4 \) so \( 9^4 \equiv 1 \mod 4 \). 7. **Use the Chinese Remainder Theorem**: Since \( 9^4 \equiv 1 \mod 5 \) and \( 9^4 \equiv 1 \mod 4 \), we have: \[ 9^4 \equiv 1 \mod 20 \] 8. **Substitute back**: Now substituting back into our earlier expression: \[ 19^{9^4} \equiv -1 + 20 \cdot 1 \mod 100 \] \[ \equiv -1 + 20 \equiv 19 \mod 100 \] 9. **Final result**: Thus, the last two digits of \( 19^{9^4} \) are \( \boxed{19} \).
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 5: Matching Type Questions|4 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Find the last two digits of the number (23)^(14)dot

Write last two digits of the number 3^(400)dot

Write last two digits of the number 3^(400)dot

The last two digits of the number 3^(400) are: (A) 81 (B) 43 (C) 29 (D) 01

Statement 1: Total number of five-digit numbers having all different digit sand divisible by 4 can be formed using the digits {1,3,2,6,8,9}i s192. Statement 2: A number is divisible by 4, if the last two digits of the number are divisible by 4.

Find the last two digits of the number 27^(27)dot

If S=1!+4!+7!+10!+ . . .+400!, then Q. The last two digits in the number S is divisible by

Find the last digit, last two digits and last three digits of the number (81)^(25)

Find the last digit of the number (13)^(12) .

Find the last three digits of the number 27^(27)dot