Home
Class 12
MATHS
If ([""^(n)C(r) + 4*""^(n)C(r+1) + 6*""...

If ` ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda)`
the value of ` lambda ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to simplify the expression and find the value of \( \lambda \). ### Step-by-Step Solution: 1. **Write the Given Expression**: We start with the expression: \[ \frac{nC_r + 4 \cdot nC_{r+1} + 6 \cdot nC_{r+2} + 4 \cdot nC_{r+3} + nC_{r+4}}{nC_r + 3 \cdot nC_{r+1} + 3 \cdot nC_{r+2} + nC_{r+3}} = \frac{n + \lambda}{r + \lambda} \] 2. **Simplify the Numerator**: We can use the property of binomial coefficients: \[ nC_r + nC_{r+1} = (n+1)C_{r+1} \] Applying this property, we can rewrite the numerator: \[ nC_r + 4 \cdot nC_{r+1} + 6 \cdot nC_{r+2} + 4 \cdot nC_{r+3} + nC_{r+4} \] can be rearranged as: \[ nC_r + nC_{r+1} + 3 \cdot nC_{r+1} + 3 \cdot nC_{r+2} + nC_{r+3} + nC_{r+4} \] This becomes: \[ (n+1)C_{r+1} + 3 \cdot (n+1)C_{r+2} + (n+1)C_{r+3} \] Continuing this process, we can combine terms to yield: \[ (n+2)C_{r+2} + (n+3)C_{r+3} + (n+4)C_{r+4} \] 3. **Simplify the Denominator**: Similarly, we simplify the denominator: \[ nC_r + 3 \cdot nC_{r+1} + 3 \cdot nC_{r+2} + nC_{r+3} \] This can be rewritten as: \[ nC_r + nC_{r+1} + 2 \cdot nC_{r+1} + 2 \cdot nC_{r+2} + nC_{r+3} \] Which simplifies to: \[ (n+1)C_{r+1} + 2 \cdot (n+1)C_{r+2} + (n+1)C_{r+3} \] 4. **Final Simplification**: After simplifying both the numerator and denominator, we have: \[ \frac{(n+4)C_{r+4}}{(n+3)C_{r+3}} \] This simplifies to: \[ \frac{n+4}{r+4} \] 5. **Equate and Solve for \( \lambda \)**: Now we equate: \[ \frac{n + \lambda}{r + \lambda} = \frac{n + 4}{r + 4} \] From this, we can see that \( \lambda = 4 \). ### Conclusion: The value of \( \lambda \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 5: Matching Type Questions|4 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

If n is even and ""^(n)C_(0)lt""^(n)C_(1) lt ""^(n)C_(2) lt ....lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt""^(n)C_(r+2) gt......gt""^(n)C_(n) , then, r=