Home
Class 12
MATHS
The value of 99^(50) - 99.98^(50) + (99...

The value of ` 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 99^{50} - 99 \cdot 98^{50} + \frac{99 \cdot 98}{1 \cdot 2} \cdot 97^{50} - \ldots + 99 \), we can utilize the Binomial Theorem. ### Step-by-Step Solution: 1. **Identify the Pattern**: The expression can be rewritten as: \[ S = 99^{50} - 99 \cdot 98^{50} + \frac{99 \cdot 98}{1 \cdot 2} \cdot 97^{50} - \ldots + 99 \] This resembles the expansion of \( (99 - 1)^{50} \) using the Binomial Theorem. 2. **Apply the Binomial Theorem**: According to the Binomial Theorem, we have: \[ (a - b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} (-b)^k \] Here, let \( a = 99 \), \( b = 1 \), and \( n = 50 \): \[ (99 - 1)^{50} = \sum_{k=0}^{50} \binom{50}{k} 99^{50-k} (-1)^k \] 3. **Rearranging the Terms**: The expression \( (99 - 1)^{50} \) simplifies to: \[ 98^{50} = \sum_{k=0}^{50} \binom{50}{k} 99^{50-k} (-1)^k \] This means that the terms in our original expression correspond to the coefficients in this expansion. 4. **Evaluate the Expression**: The original expression \( S \) can be interpreted as the sum of the first 51 terms of the expansion of \( (99 - 1)^{50} \). Thus: \[ S = (99 - 1)^{50} = 98^{50} \] 5. **Final Calculation**: Since \( 98^{50} \) is a positive number, and the alternating sum of the binomial coefficients leads to cancellation of terms, we find that: \[ S = 0 \] ### Conclusion: The value of the expression \( 99^{50} - 99 \cdot 98^{50} + \frac{99 \cdot 98}{1 \cdot 2} \cdot 97^{50} - \ldots + 99 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 5: Matching Type Questions|4 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

An equation a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0 has roots .^(99)C_(0), .^(99)C_(1), ^(99)C_(2), "…..", .^(99)C_(99) The value of (.^(99)C_(0))^(2) + (.^(99)C_(1))^(2) + "….." + (.^(99)C_(99))^(2) is equal to

The value of int_(0)^(2pi) cos^(99)x dx , is

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

Which is larger : (99^(50)+100^(50)) or (101)^(50) .

Evaluate: (-99) div 1

The predecessor of -99 is (a) -98 (b) -100 (c) 98 (d) 100

If H_n=1+1/2+...+1/ndot , then the value of S_n=1+3/2+5/3+...+(99)/(50) is a. H_(50)+50 b. 100-H_(50) c. 49+H_(50) d. H_(50)+100

The number of real solutions of the equation 4x^(99) +5x^(98) + 4x^(97) + 5x^(96) + …..+ 4x + 5 =0 is (1) 1 (2) 5 (3) 7 (4) 97

Factorise 99x^(2)-202xy+99y^(2) .

Evaluate 9 + 99 + 999 +……… upto n terms.