Home
Class 12
MATHS
If the value of (n + 2) . ""^(n)C(0) ...

If the value of
` (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -...`
is equal to `k(n +1)` , the value of k is .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the value of \( k \) such that the expression equals \( k(n + 1) \). ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression given is: \[ (n + 2) \cdot \binom{n}{0} \cdot 2^{n+1} - (n + 1) \cdot \binom{n}{1} \cdot 2^n + n \cdot \binom{n}{2} \cdot 2^{n-1} - \ldots \] This is a series involving binomial coefficients and powers of 2. 2. **Substituting Values of \( n \)**: To find a pattern, we will substitute small integer values for \( n \). - **For \( n = 1 \)**: \[ (1 + 2) \cdot \binom{1}{0} \cdot 2^{1+1} - (1 + 1) \cdot \binom{1}{1} \cdot 2^1 + 1 \cdot \binom{1}{2} \cdot 2^{1-1} \] Simplifying this: \[ 3 \cdot 1 \cdot 4 - 2 \cdot 1 \cdot 2 + 1 \cdot 0 \cdot 1 = 12 - 4 + 0 = 8 \] 3. **Finding the General Form**: We observe that for \( n = 1 \), the expression evaluates to 8. We can express this as: \[ 8 = 4 \cdot (1 + 1) = 4 \cdot 2 \] 4. **Generalizing for \( n \)**: From our calculations, we can see that the expression seems to yield: \[ 4(n + 1) \] for \( n = 1 \). 5. **Comparing with the Given Expression**: We are given that the expression equals \( k(n + 1) \). From our findings: \[ 4(n + 1) = k(n + 1) \] This implies that \( k = 4 \). ### Conclusion: Thus, the value of \( k \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 5: Matching Type Questions|4 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is (a) 7 (b) 5 (c) 6 (d) 9

If ""^(n)C_r : ""^(n)C_(r+1) =1 : 2 and^(n)C_(r+1): ""^(n)C_(r+2) = 2 : 3 determine the values of n and r.

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

Let a=3^(1//224)+1 and for all n ge 3 , let f(n)=""^(n)C_(0)a^(n-1)-""^(n)C_(1)a^(n-2)+""^(n)C_(2)a^(n-3)+...+(_1)^(n-1)*""^(n)C_(n-1)*a^(0). If the value of f(2016)+f(2017)= 3^(k) , the value of K is

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .