Home
Class 12
MATHS
If (1 +x + x^(2) + …+ x^(9))^(4) (x + x...

If ` (1 +x + x^(2) + …+ x^(9))^(4) (x + x^(2) + x^(3) + … + x^(9))`
` = sum_(r=1)^(45) a_(r) x^(r)` and the value of ` a_(2) + a_(6) + a_(10) + … + a_(42) " is " lambda `
the sum of all digits of ` lambda ` is .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the expression and compute the required values systematically. ### Step 1: Simplify the Expression The expression given is: \[ (1 + x + x^2 + \ldots + x^9)^4 (x + x^2 + x^3 + \ldots + x^9) \] The first part, \(1 + x + x^2 + \ldots + x^9\), is a geometric series. The sum of a geometric series can be calculated using the formula: \[ S_n = \frac{a(1 - r^n)}{1 - r} \] where \(a\) is the first term, \(r\) is the common ratio, and \(n\) is the number of terms. Here, \(a = 1\), \(r = x\), and \(n = 10\): \[ 1 + x + x^2 + \ldots + x^9 = \frac{1 - x^{10}}{1 - x} \] Thus, we have: \[ (1 + x + x^2 + \ldots + x^9)^4 = \left(\frac{1 - x^{10}}{1 - x}\right)^4 \] The second part, \(x + x^2 + x^3 + \ldots + x^9\), can also be simplified: \[ x + x^2 + x^3 + \ldots + x^9 = x(1 + x + x^2 + \ldots + x^8) = x \cdot \frac{1 - x^9}{1 - x} = \frac{x(1 - x^9)}{1 - x} \] ### Step 2: Combine the Expressions Now, combining both parts, we get: \[ \left(\frac{1 - x^{10}}{1 - x}\right)^4 \cdot \frac{x(1 - x^9)}{1 - x} = \frac{x(1 - x^{10})^4(1 - x^9)}{(1 - x)^5} \] ### Step 3: Find Coefficients We know that this expression can be represented as: \[ \sum_{r=1}^{45} a_r x^r \] We need to find the sum \(a_2 + a_6 + a_{10} + \ldots + a_{42}\). ### Step 4: Evaluate at Specific Values To find the coefficients, we will evaluate the expression at specific values of \(x\). 1. **Evaluate at \(x = 1\)**: \[ (1 + 1 + 1 + \ldots + 1)^4 \cdot (1 + 1 + 1 + \ldots + 1) = 10^4 \cdot 9 = 90000 \] This gives us: \[ a_1 + a_2 + a_3 + \ldots + a_{45} = 90000 \quad \text{(Equation 1)} \] 2. **Evaluate at \(x = -1\)**: \[ (1 - 1 + 1 - 1 + \ldots)^4 \cdot (-1 + 1 - 1 + \ldots) = 0 \] This gives us: \[ -a_1 + a_2 - a_3 + a_4 - \ldots - a_{45} = 0 \quad \text{(Equation 2)} \] 3. **Evaluate at \(x = i\)**: The sum of four consecutive powers of \(i\) is zero. Thus: \[ (1 + i + i^2 + i^3)^4 \cdot (i + i^2 + i^3 + i^4) = 0 \] 4. **Evaluate at \(x = -i\)**: Similarly, we will have: \[ -4i = a_1 i + a_2 - a_3 i - a_4 + \ldots \quad \text{(Equation 4)} \] ### Step 5: Combine Equations Adding Equations 1, 2, 3, and 4 gives: \[ 4(a_2 + a_6 + a_{10} + \ldots + a_{42}) = 90000 \] Thus: \[ a_2 + a_6 + a_{10} + \ldots + a_{42} = \frac{90000}{4} = 22500 \] Let \(\lambda = 22500\). ### Step 6: Calculate the Sum of Digits Now, we need to find the sum of the digits of \(\lambda = 22500\): \[ 2 + 2 + 5 + 0 + 0 = 9 \] ### Final Answer The sum of all digits of \(\lambda\) is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 5: Matching Type Questions|4 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1-x-x^(2))^(20) = sum_(r=0)^(40)a_(r).x^(r ) , then value of a_(1) + 3a_(3) + 5a_(5) + "….." + 39a_(39) is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

(1+2x+3x^(2))^(15) = sum_(r=0)^(30) a_(r)x^(r) then digit at the unit place of a_(0) + a_(1) + a_(30) is

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Let (2x^(2)+3x+4)^(10)=sum_(r=0)^(20)a_(r )x^(r ) , then the value of (a_(7))/(a_(13)) is (a) 6 (b) 8 (c) 12 (d) 16

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to