Home
Class 12
MATHS
If circumcentre of an equilateral triang...

If circumcentre of an equilateral triangle inscribed in `x^(2)/a^(2) + y^(2)/b^(2) = 1,` with vertices having eccentric angles `alpna, beta, gamma,` respectively is `(x_(1), y_(1))` then `sum cos alpha cos beta + sum sin alpha sin beta =`

A

`(9h^(2))/a^(2)+(9k^(2))/b^(2)+3/2`

B

`9h^(2)-9k^(2)+a^(2)b^(2)`

C

`(9h^(2))/a^(2)+(9k^(2))/b^(2)+3`

D

`(9h^(2))/(2a^(2))+(9k^(2))/(2b^(2))-3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning laid out in the video transcript and derive the required expression. ### Step 1: Understand the Problem We have an ellipse given by the equation \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). An equilateral triangle is inscribed in this ellipse with vertices corresponding to eccentric angles \( \alpha, \beta, \gamma \). We need to find the value of \( \sum \cos \alpha \cos \beta + \sum \sin \alpha \sin \beta \). ### Step 2: Find Coordinates of the Vertices The coordinates of the vertices of the triangle inscribed in the ellipse can be expressed as: - Vertex \( P \) at \( (a \cos \alpha, b \sin \alpha) \) - Vertex \( Q \) at \( (a \cos \beta, b \sin \beta) \) - Vertex \( R \) at \( (a \cos \gamma, b \sin \gamma) \) ### Step 3: Calculate the Circumcenter The circumcenter \( (x_1, y_1) \) of the triangle formed by these vertices can be calculated as: \[ x_1 = \frac{1}{3}(a \cos \alpha + a \cos \beta + a \cos \gamma) = \frac{a}{3}(\cos \alpha + \cos \beta + \cos \gamma) \] \[ y_1 = \frac{1}{3}(b \sin \alpha + b \sin \beta + b \sin \gamma) = \frac{b}{3}(\sin \alpha + \sin \beta + \sin \gamma) \] ### Step 4: Formulate the Equations From the coordinates of the circumcenter, we can write two equations: 1. \( 3x_1 = a(\cos \alpha + \cos \beta + \cos \gamma) \) 2. \( 3y_1 = b(\sin \alpha + \sin \beta + \sin \gamma) \) ### Step 5: Square and Add the Equations Now, we square both equations and add them: \[ (3x_1)^2 = a^2(\cos \alpha + \cos \beta + \cos \gamma)^2 \] \[ (3y_1)^2 = b^2(\sin \alpha + \sin \beta + \sin \gamma)^2 \] Adding these gives: \[ 9(x_1^2 + y_1^2) = a^2(\cos \alpha + \cos \beta + \cos \gamma)^2 + b^2(\sin \alpha + \sin \beta + \sin \gamma)^2 \] ### Step 6: Expand the Right Side Using the identity \( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \): \[ 9(x_1^2 + y_1^2) = a^2(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 2(\cos \alpha \cos \beta + \cos \beta \cos \gamma + \cos \gamma \cos \alpha)) + b^2(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2(\sin \alpha \sin \beta + \sin \beta \sin \gamma + \sin \gamma \sin \alpha)) \] ### Step 7: Substitute and Rearrange Rearranging the terms, we can isolate the terms involving \( \sum \cos \alpha \cos \beta \) and \( \sum \sin \alpha \sin \beta \): \[ 2 \sum (\cos \alpha \cos \beta + \sin \alpha \sin \beta) = \frac{9}{2} \left( \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} \right) - \frac{3}{2} \] ### Step 8: Final Expression Thus, we can express the desired sum as: \[ \sum \cos \alpha \cos \beta + \sum \sin \alpha \sin \beta = \frac{9}{2} \left( \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} \right) - \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|14 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

If the direction angles of a line are alpha, beta and gamma respectively, then cos 2 alpha + cos 2 beta + cos 2gamma is equal to

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

Area of the triangle formed by the tangents at the point on the ellipse x^2/a^2+y^2/b^2=1 whose eccentric angles are alpha,beta,gamma is

If a vector vec(A) make angles alpha , beta and gamma , respectively , with the X , Y and Z axes , then sin^(2) alpha + sin^(2) beta + sin^(2) gamma =

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

If a line makes angles alpha,beta,gamma with the axes respectively tehn cos2alpha+cos2beta+cos2gamma= -2 b. -1 c. 1 d. 2

If vec(A) makes an angle alpha, beta and gamma from x,y and z axis respectively then sin^(2)alpha+sin^(2) beta+sin^(2) gamma=

Vector vecP angle alpha,beta and gamma with the x,y and z axes respectively. Then sin^(2)alpha+sin^(2)beta+sin^(2)gamma=

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

ARIHANT MATHS ENGLISH-ELLIPSE-Exercise (Single Option Correct Type Questions)
  1. If the line x+2y+4=0 cutting the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2...

    Text Solution

    |

  2. An arc of a bridge is semi-elliptical with the major axis horizonta...

    Text Solution

    |

  3. A tangent to the ellipse (x^2)/(25)+(y^2)/(16)=1 at any point P meets ...

    Text Solution

    |

  4. If tangents are drawn from any point on the circle x^(2) + y^(2) = 25...

    Text Solution

    |

  5. the equation of the chord of contact of the pair of tangents drawn to ...

    Text Solution

    |

  6. x-2y+4=0 is a common tangent to y^2=4x and x^4/4+y^2/b^2=1. Then the v...

    Text Solution

    |

  7. Find a point on the curve x^(2)+2y^(2)=6 whose distance from the line ...

    Text Solution

    |

  8. From a point on the axis of x common tangents are drawn to the parabol...

    Text Solution

    |

  9. If circumcentre of an equilateral triangle inscribed in x^(2)/a^(2) + ...

    Text Solution

    |

  10. A parabola is drawn whose focus is one of the foci of the ellipse x^2...

    Text Solution

    |

  11. If the maximum distance of any point on the ellipse x^2+2y^2+2x y=1 fr...

    Text Solution

    |

  12. The length of the common chord of the ellipse ((x-1)^2)/9+((y-2)^2)/4=...

    Text Solution

    |

  13. The eccentricity of ellipse ax^2 + by^2 + 2gx + 2fy + c = 0 if its axi...

    Text Solution

    |

  14. A circle has the same center as an ellipse and passes through the foci...

    Text Solution

    |

  15. The area of the rectangle formed by the perpendiculars from the centre...

    Text Solution

    |

  16. An ellipse is inscribed in a circle and a point within the circle is c...

    Text Solution

    |

  17. An ellipse slides between two perpendicular straight lines. Then id...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. The equation of the locus of the middle point of the portion of the ta...

    Text Solution

    |

  20. The tangent at a point P(acosvarphi,bsinvarphi) of the ellipse (x^2)/(...

    Text Solution

    |