Home
Class 12
MATHS
If latus recturn of the ellipse x^2 tan^...

If latus recturn of the ellipse `x^2 tan^2 alpha+y^2 sec^2 alpha= 1` is `1/2` then `alpha(0 lt alpha lt pi)` is equal to

A

`pi/12`

B

`pi/6`

C

`(5pi)/12`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) given that the latus rectum of the ellipse defined by the equation \[ x^2 \tan^2 \alpha + y^2 \sec^2 \alpha = 1 \] is \( \frac{1}{2} \). ### Step 1: Rewrite the equation in standard form The given equation can be rewritten as: \[ \frac{x^2}{\cot^2 \alpha} + \frac{y^2}{\cos^2 \alpha} = 1 \] From this, we can identify \( a^2 = \cot^2 \alpha \) and \( b^2 = \cos^2 \alpha \). ### Step 2: Find the latus rectum of the ellipse The formula for the latus rectum \( L \) of an ellipse is given by: \[ L = \frac{2b^2}{a} \] Substituting the values of \( a \) and \( b \): \[ L = \frac{2 \cos^2 \alpha}{\cot \alpha} \] ### Step 3: Substitute the given value of the latus rectum We know that the latus rectum is \( \frac{1}{2} \): \[ \frac{2 \cos^2 \alpha}{\cot \alpha} = \frac{1}{2} \] ### Step 4: Simplify the equation We can express \( \cot \alpha \) as \( \frac{\cos \alpha}{\sin \alpha} \): \[ \frac{2 \cos^2 \alpha}{\frac{\cos \alpha}{\sin \alpha}} = \frac{1}{2} \] This simplifies to: \[ 2 \cos^2 \alpha \cdot \frac{\sin \alpha}{\cos \alpha} = \frac{1}{2} \] \[ 2 \sin \alpha \cos \alpha = \frac{1}{4} \] ### Step 5: Use the double angle identity Using the double angle identity \( \sin 2\alpha = 2 \sin \alpha \cos \alpha \): \[ \sin 2\alpha = \frac{1}{4} \] ### Step 6: Solve for \( 2\alpha \) Now we can find \( 2\alpha \): \[ 2\alpha = \arcsin\left(\frac{1}{4}\right) \] ### Step 7: Find possible values for \( \alpha \) The general solutions for \( 2\alpha \) can be: \[ 2\alpha = \arcsin\left(\frac{1}{4}\right) \quad \text{or} \quad 2\alpha = \pi - \arcsin\left(\frac{1}{4}\right) \] Thus, \[ \alpha = \frac{1}{2} \arcsin\left(\frac{1}{4}\right) \quad \text{or} \quad \alpha = \frac{\pi}{2} - \frac{1}{2} \arcsin\left(\frac{1}{4}\right) \] ### Step 8: Evaluate the possible values of \( \alpha \) We need to evaluate the possible values of \( \alpha \) within the range \( (0, \pi) \). The possible values of \( \alpha \) can be calculated as: 1. \( \alpha = \frac{1}{2} \arcsin\left(\frac{1}{4}\right) \) 2. \( \alpha = \frac{\pi}{2} - \frac{1}{2} \arcsin\left(\frac{1}{4}\right) \) ### Conclusion After evaluating the possible values, we find that: - \( \alpha = \frac{\pi}{12} \) - \( \alpha = \frac{\pi}{6} \) - \( \alpha = \frac{5\pi}{12} \) - \( \alpha = \frac{\pi}{2} \) Thus, the values of \( \alpha \) that satisfy the condition are: - \( \frac{\pi}{12} \) - \( \frac{5\pi}{12} \)
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|9 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

Solve : tan ^(2) alpha + sec alpha - 1 = 0,0 le alpha lt 2pi.

if (1+tan alpha )(1+tan4 alpha ) =2 where alpha in (0 , pi/16 ) then alpha equal to

If 2sec^2 alpha- sec^4 alpha-2 cosec^2 alpha+cosec^4 alpha=15/4 then tan alpha=

Consider the ellipse x^(2)/(tan^(2)alpha)+y^(2)/(sec^(2)alpha)=1 where alphain(0,pi/2) . Which of the following quantities would vary as alpha varies?

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

If 0 lt alpha lt beta lt (pi)/(2) then

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If tan 2theta= sec 2 alpha , prove that sin 2theta=(1-tan^4 alpha)/(1+tan^4 alpha)

lf the eccentricity of the hyperbola x^2 - y^2 sec^2 alpha=5 is sqrt3 times the eccentricity of the ellipse x^2 (sec^2alpha )+y^2=25, then a value of alpha is : (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2

lf the eccentricity of the hyperbola x^2-y^2(sec)^2alpha=5 is sqrt3 times the eccentricity of the ellipse x^2(sec)^2alpha+y^2=25, then a value of alpha is : (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2