Home
Class 12
MATHS
We are given the curvers y=int(- infty)^...

We are given the curvers `y=int_(- infty)^(x) f(t) dt` through the point `(0,(1)/(2))` any `y=f(x)`, where `f(x) gt 0 and f(x)` is differentiable ,`AA x in ` R through `(0,1)` Tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the X- axists
The number of solutions `f(x) =2ex ` is equal to

A

0

B

1

C

2

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|23 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then The function f(x) is

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then int_(x to oo)(f(x))^f(-x) is

Given the curves y=f(x) passing through the point (0,1) and y=int_(-oo)^(x) f(t) passing through the point (0,(1)/(2)) The tangents drawn to both the curves at the points with equal abscissae intersect on the x-axis. Then the curve y=f(x), is

Given two curves: y=f(x) passing through the point (0,1) and g(x)=int_(-oo)^xf(t)dt passing through the point (0,1/n)dot The tangents drawn to both the curves at the points with equal abscissas intersect on the x-axis. Find the curve y=f(x)dot

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/n) are such that the tangents drawn to them at the point with equal abscissae intersect on x axis. find Curve y=f(x)

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/n) are such that the tangents drawn to them at the point with equal abscissae intersect on x axis

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/n) are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question:The equation of curve y=f(x)

Let f(x)= sinx - tanx, x in (0, pi//2) then tangent drawn to the curve y= f(x) at any point will

A pair of curves y=f_1(x) and y=f_2(x) are such that following conditions are satisfied.(i) The tangents drawn at points with equal abscissae intersect on y-axis.(ii) The normals drawn at points with equal abscissae intersect on x-axis

Area bounded by y=f^(-1)(x) and tangent and normal drawn to it at points with abscissae pi and 2pi , where f(x)=sin x-x is

ARIHANT MATHS ENGLISH-MONOTONICITY MAXIMA AND MINIMA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. We are given the curvers y=int(- infty)^(x) f(t) dt through the point ...

    Text Solution

    |

  2. The least value of alpha in R for which 4ax^2+(1)/(x)ge1, for all xgt ...

    Text Solution

    |

  3. The number of points in (-oo,oo), for which x^2-xsinx-cosx=0, is

    Text Solution

    |

  4. Let f : R ->(0,oo) and g : R -> R be twice differentiable functions...

    Text Solution

    |

  5. Let f:(0,oo)vecR be given by f(x)=int(1/x)^x(e^(-(t+1/t))dt)/t , then ...

    Text Solution

    |

  6. The fuction f(x)=2|x|+|x+2|-||x+2|-2|x|| has a local minimum or a loca...

    Text Solution

    |

  7. A rectangular sheet of fixed perimeter with sides having their lengths...

    Text Solution

    |

  8. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  9. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  10. e total number of local maxima and local minima of the function f(x) =...

    Text Solution

    |

  11. If the function g:(-oo,oo)->(-pi/2,pi/2) is given by g(u)=2tan^-1(e^u)...

    Text Solution

    |

  12. The second degree polynomial f(x), satisfying f(0)=o, f(1)=1,f'(x)gt...

    Text Solution

    |

  13. If f(x)=x^3+bx^2+cx+d and 0<b^2<c, then

    Text Solution

    |

  14. If f(x)=x^2+2b x+2c^2 and g(x)= -x^2-2c x+b^2 are such that min f(x...

    Text Solution

    |

  15. The length of the longest interval in which the function 3sinx-4sin^3x...

    Text Solution

    |

  16. If f(x)=e^(1-x) then f(x) is

    Text Solution

    |

  17. The maximum value of (cosalpha(1))(cos alpha(2))...(cosalpha(n)), un...

    Text Solution

    |

  18. If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt ...

    Text Solution

    |

  19. If f(x) is a cubic polynomil which as local maximum at x=-1 . If f(2)=...

    Text Solution

    |

  20. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  21. about to only mathematics

    Text Solution

    |