Home
Class 12
MATHS
If f(x) = |x| + |x-1|-|x-2|, then f(x)...

If `f(x) = |x| + |x-1|-|x-2|`, then `f(x)`

A

a) has minima at `x=1`

B

b) has maxima at `x=0`

C

c) has neither maxima nor minima at `x=3`

D

d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( f(x) = |x| + |x-1| - |x-2| \), we will analyze the function by considering different cases based on the values of \( x \). The absolute value function changes behavior at the points where the expression inside the absolute value equals zero. Thus, we will consider the critical points \( x = 0 \), \( x = 1 \), and \( x = 2 \). ### Step 1: Identify the intervals The critical points divide the number line into the following intervals: 1. \( x < 0 \) 2. \( 0 \leq x < 1 \) 3. \( 1 \leq x < 2 \) 4. \( x \geq 2 \) ### Step 2: Evaluate \( f(x) \) in each interval **Case 1: \( x < 0 \)** - Here, \( |x| = -x \), \( |x-1| = -(x-1) = -x + 1 \), and \( |x-2| = -(x-2) = -x + 2 \). - Thus, \[ f(x) = -x + (-x + 1) - (-x + 2) = -x - x + 1 + x - 2 = -x + 1. \] - Therefore, \[ f(x) = -3x + 3. \] **Case 2: \( 0 \leq x < 1 \)** - Here, \( |x| = x \), \( |x-1| = -(x-1) = -x + 1 \), and \( |x-2| = -(x-2) = -x + 2 \). - Thus, \[ f(x) = x + (-x + 1) - (-x + 2) = x - x + 1 + x - 2 = -x + 3. \] **Case 3: \( 1 \leq x < 2 \)** - Here, \( |x| = x \), \( |x-1| = x - 1 \), and \( |x-2| = -(x-2) = -x + 2 \). - Thus, \[ f(x) = x + (x - 1) - (-x + 2) = x + x - 1 + x - 2 = x + 1. \] **Case 4: \( x \geq 2 \)** - Here, \( |x| = x \), \( |x-1| = x - 1 \), and \( |x-2| = x - 2 \). - Thus, \[ f(x) = x + (x - 1) - (x - 2) = x + x - 1 - x + 2 = x + 1. \] ### Step 3: Combine the results Now we can summarize the function \( f(x) \) in piecewise form: \[ f(x) = \begin{cases} -3x + 3 & \text{if } x < 0 \\ -x + 3 & \text{if } 0 \leq x < 1 \\ x + 1 & \text{if } 1 \leq x < 2 \\ x + 1 & \text{if } x \geq 2 \end{cases} \] ### Step 4: Find the minimum and maximum To find the minimum and maximum values, we can evaluate the function at the critical points \( x = 0, 1, 2 \): - \( f(0) = 3 \) - \( f(1) = 2 \) - \( f(2) = 3 \) From this, we can see that the minimum value occurs at \( x = 1 \) where \( f(1) = 2 \). ### Final Answer The function \( f(x) \) has a minimum at \( x = 1 \) with \( f(1) = 2 \).
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|27 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|16 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x) =inte^x(x-1)(x-2)dx, then f(x) decrease in the interval

Find the range of each of the following functions: f(x)=|x-3| f(x)=1-|x-2| f(x)=(|x-4|)/(x-4)

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

If f(x)+2f(1-x)=x^2+2AA x in R, then f(x) given as

If f(x)+2f(1-x)=x^2+2AA x in R, then f(x) given as

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))