Home
Class 12
MATHS
Statement I phi(x)=int(0)^(x)(3 sin t+4 ...

Statement I `phi(x)=int_(0)^(x)(3 sin t+4 cos t)dt,[(pi)/(6),(pi)/(3)]phi(x)-`
attains its maximum value at `x=(pi)/(3).`
Statement II `phi(x)=int_(0)^(x)(3sint+4cost)dt,phi(x)` is
increasing function in `[(pi)/(6),(pi)/(3)]`

A

Statement I is true, Statement II is also true, Statement II is the correct explanation of statement I.

B

Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.

C

Statement I is true, Statement II is false

D

Statement I is false, Statement II is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( \phi(x) \) defined as: \[ \phi(x) = \int_{0}^{x} (3 \sin t + 4 \cos t) \, dt \] ### Step 1: Evaluate the Integral First, we need to compute the integral \( \phi(x) \). \[ \phi(x) = \int_{0}^{x} (3 \sin t + 4 \cos t) \, dt \] Using the properties of integrals, we can separate the integral: \[ \phi(x) = \int_{0}^{x} 3 \sin t \, dt + \int_{0}^{x} 4 \cos t \, dt \] Now, we compute each integral separately: 1. The integral of \( 3 \sin t \): \[ \int 3 \sin t \, dt = -3 \cos t \] Evaluating from \( 0 \) to \( x \): \[ \left[-3 \cos t \right]_{0}^{x} = -3 \cos x + 3 \cos 0 = -3 \cos x + 3 \] 2. The integral of \( 4 \cos t \): \[ \int 4 \cos t \, dt = 4 \sin t \] Evaluating from \( 0 \) to \( x \): \[ \left[4 \sin t \right]_{0}^{x} = 4 \sin x - 0 = 4 \sin x \] Combining both results, we have: \[ \phi(x) = (-3 \cos x + 3) + 4 \sin x = 3 - 3 \cos x + 4 \sin x \] ### Step 2: Differentiate \( \phi(x) \) Next, we differentiate \( \phi(x) \) to analyze its monotonicity: \[ \phi'(x) = \frac{d}{dx}(3 - 3 \cos x + 4 \sin x) \] Using the derivatives of sine and cosine: \[ \phi'(x) = 0 + 3 \sin x + 4 \cos x \] ### Step 3: Analyze the Sign of \( \phi'(x) \) We need to check the sign of \( \phi'(x) \) in the interval \( \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \). 1. At \( x = \frac{\pi}{6} \): \[ \phi'\left(\frac{\pi}{6}\right) = 3 \sin\left(\frac{\pi}{6}\right) + 4 \cos\left(\frac{\pi}{6}\right) = 3 \cdot \frac{1}{2} + 4 \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} + 2\sqrt{3} \] 2. At \( x = \frac{\pi}{3} \): \[ \phi'\left(\frac{\pi}{3}\right) = 3 \sin\left(\frac{\pi}{3}\right) + 4 \cos\left(\frac{\pi}{3}\right) = 3 \cdot \frac{\sqrt{3}}{2} + 4 \cdot \frac{1}{2} = \frac{3\sqrt{3}}{2} + 2 \] Both values are positive since \( \sin x \) and \( \cos x \) are positive in the interval \( \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \). ### Conclusion Since \( \phi'(x) > 0 \) in the interval \( \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \), \( \phi(x) \) is increasing in this interval. Therefore, \( \phi(x) \) attains its maximum value at \( x = \frac{\pi}{3} \). ### Final Statements - **Statement I**: True, \( \phi(x) \) attains its maximum value at \( x = \frac{\pi}{3} \). - **Statement II**: True, \( \phi(x) \) is an increasing function in the interval \( \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \).
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|33 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin 3x dx

int_(0)^(pi//6) cos x cos 3x dx

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

int_(pi//6)^(pi//3) sin(3x)dx=

If phi (x) =int_(1//x)^(sqrt(x)) sin(t^(2))dt then phi ' (1)is equal to

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

Let f(x) = int_(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for