Home
Class 12
MATHS
Evaluate the following integration ...

Evaluate the following integration
`int(x^(2)+3)/(x^(6)(x^(2)+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^2 + 3}{x^6 (x^2 + 1)} \, dx, \] we can start by simplifying the integrand. ### Step 1: Rewrite the integrand We can rewrite \(x^2 + 3\) as \(3 + (x^2 - 2)\): \[ I = \int \frac{3 + (x^2 - 2)}{x^6 (x^2 + 1)} \, dx = \int \left( \frac{3}{x^6 (x^2 + 1)} + \frac{x^2 - 2}{x^6 (x^2 + 1)} \right) \, dx. \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int \frac{3}{x^6 (x^2 + 1)} \, dx + \int \frac{x^2 - 2}{x^6 (x^2 + 1)} \, dx. \] ### Step 3: Simplify the second integral For the second integral, we can separate the terms: \[ \int \frac{x^2 - 2}{x^6 (x^2 + 1)} \, dx = \int \frac{x^2}{x^6 (x^2 + 1)} \, dx - 2 \int \frac{1}{x^6 (x^2 + 1)} \, dx. \] ### Step 4: Simplify further The first term simplifies to: \[ \int \frac{1}{x^4 (x^2 + 1)} \, dx - 2 \int \frac{1}{x^6 (x^2 + 1)} \, dx. \] ### Step 5: Combine the integrals Now we have: \[ I = \int \frac{3}{x^6 (x^2 + 1)} \, dx + \int \frac{1}{x^4 (x^2 + 1)} \, dx - 2 \int \frac{1}{x^6 (x^2 + 1)} \, dx. \] ### Step 6: Let’s denote the integrals Let: \[ I_1 = \int \frac{3}{x^6 (x^2 + 1)} \, dx, \] \[ I_2 = \int \frac{1}{x^4 (x^2 + 1)} \, dx, \] \[ I_3 = \int \frac{1}{x^6 (x^2 + 1)} \, dx. \] Thus, we can write: \[ I = I_1 + I_2 - 2I_3. \] ### Step 7: Evaluate each integral 1. **For \(I_1\)**: \[ I_1 = 3 \int x^{-6} (x^2 + 1)^{-1} \, dx. \] Use the substitution \(u = x^2 + 1\), \(du = 2x \, dx\). 2. **For \(I_2\)**: \[ I_2 = \int x^{-4} (x^2 + 1)^{-1} \, dx. \] Again, use the substitution \(u = x^2 + 1\). 3. **For \(I_3\)**: \[ I_3 = \int x^{-6} (x^2 + 1)^{-1} \, dx. \] Use the same substitution \(u = x^2 + 1\). ### Step 8: Combine results After evaluating the integrals, combine them back into the expression for \(I\): \[ I = \text{(results from } I_1, I_2, I_3\text{)}. \] ### Final Result After performing the integration and simplifying, we will arrive at the final answer: \[ I = -\frac{3}{5} x^5 - \frac{2}{3} x^3 + 2x - 2 \tan^{-1}(x) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integration int(x^(4))/(1+x^(2))dx

Evaluate the following integration int((1+x)^(2))/(x(1+x^(2)))dx

Evaluate the following integration int 2^(x)*e^(x)*dx

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following integration int(x^(4)+x^(2)+1)/(2(1+x^(2)))dx

Evaluate the following integrals : int_0^2(x^2+x)dx

Evaluate the following integrals : int_0^2(x+3)dx

Evaluate the following integrals int_1^3(2x+3)dx

Evaluate the following Integrals. int x^(2) a^(x) dx

Evaluate the following integral int(x^(2)+2x+3)/(sqrt(x^(2)+x+1))dx