Home
Class 12
MATHS
Evaluate the following integration ...

Evaluate the following integration
`int((1+x)^(2))/(x(1+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{(1+x)^2}{x(1+x^2)} \, dx, \] we will follow these steps: ### Step 1: Expand the numerator Using the formula \((A + B)^2 = A^2 + B^2 + 2AB\), we can expand \((1 + x)^2\): \[ (1 + x)^2 = 1^2 + x^2 + 2 \cdot 1 \cdot x = 1 + x^2 + 2x. \] So we can rewrite the integral as: \[ I = \int \frac{1 + x^2 + 2x}{x(1 + x^2)} \, dx. \] ### Step 2: Split the integral Now, we can split the integral into three separate integrals: \[ I = \int \frac{1}{x(1 + x^2)} \, dx + \int \frac{x^2}{x(1 + x^2)} \, dx + 2 \int \frac{x}{x(1 + x^2)} \, dx. \] This simplifies to: \[ I = \int \frac{1}{x(1 + x^2)} \, dx + \int \frac{x}{1 + x^2} \, dx + 2 \int \frac{1}{1 + x^2} \, dx. \] ### Step 3: Simplify the integrals The second integral simplifies as follows: \[ \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \ln(1 + x^2) + C_1, \] and the third integral is a standard integral: \[ \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) + C_2. \] ### Step 4: Solve the first integral For the first integral, we can use partial fraction decomposition: \[ \frac{1}{x(1 + x^2)} = \frac{A}{x} + \frac{Bx + C}{1 + x^2}. \] Multiplying through by the denominator \(x(1 + x^2)\) and equating coefficients, we can solve for \(A\), \(B\), and \(C\). After finding these constants, we can integrate each term. ### Step 5: Combine the results After computing each integral, we combine the results: \[ I = \ln|x| + \frac{1}{2} \ln(1 + x^2) + 2 \tan^{-1}(x) + C, \] where \(C\) is the constant of integration. ### Final Result Thus, the final result of the integral is: \[ I = \ln|x| + \frac{1}{2} \ln(1 + x^2) + 2 \tan^{-1}(x) + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integration int(x^(4)+x^(2)+1)/(2(1+x^(2)))dx

Evaluate the following integration int(x^(4))/(1+x^(2))dx

Evaluate the following integration int(x^(2)+3)/(x^(6)(x^(2)+1))dx

Evaluate the following integration int 2^(x)*e^(x)*dx

Evaluate the following integral : int((x+1)(x-2))/(sqrt(x))dx

Evaluate the following integration int((x^(2)+sin^(2)x)sec^(2)x)/((1+x^(2)))dx

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

Evaluate the following integrals : int1/(1+cos2x)dx

Evaluate the following integral int(x^(2)+2x+3)/(sqrt(x^(2)+x+1))dx

Evaluate the following integrals: int sqrt(1+(x^(2))/(9))dx