Home
Class 12
MATHS
Evaluate the following integration ...

Evaluate the following integration
`int(x^(4)+x^(2)+1)/(2(1+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^4 + x^2 + 1}{2(1 + x^2)} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \frac{1}{2} \int \frac{x^4 + x^2 + 1}{1 + x^2} \, dx. \] ### Step 2: Simplify the Integrand Next, we can simplify the integrand by dividing \(x^4 + x^2 + 1\) by \(1 + x^2\). We can do polynomial long division or notice that: \[ x^4 + x^2 + 1 = (x^2)(1 + x^2) + 1. \] Thus, we can rewrite the integrand as: \[ \frac{x^4 + x^2 + 1}{1 + x^2} = x^2 + \frac{1}{1 + x^2}. \] ### Step 3: Substitute Back into the Integral Now, substituting this back into the integral, we have: \[ I = \frac{1}{2} \int \left( x^2 + \frac{1}{1 + x^2} \right) \, dx. \] ### Step 4: Separate the Integral We can separate the integral into two parts: \[ I = \frac{1}{2} \left( \int x^2 \, dx + \int \frac{1}{1 + x^2} \, dx \right). \] ### Step 5: Evaluate Each Integral Now we evaluate each integral separately. 1. The integral of \(x^2\) is: \[ \int x^2 \, dx = \frac{x^3}{3}. \] 2. The integral of \(\frac{1}{1 + x^2}\) is a standard integral: \[ \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x). \] ### Step 6: Combine the Results Now substituting back into our expression for \(I\): \[ I = \frac{1}{2} \left( \frac{x^3}{3} + \tan^{-1}(x) \right) + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result is: \[ I = \frac{x^3}{6} + \frac{1}{2} \tan^{-1}(x) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integration int(x^(4))/(1+x^(2))dx

Evaluate the following integration int 2^(x)*e^(x)*dx

Evaluate the following integration int((x^(2)+sin^(2)x)sec^(2)x)/((1+x^(2)))dx

Evaluate the following integration int((1+x)^(2))/(x(1+x^(2)))dx

Evaluate the following integrals : int_0^2(x^2+x)dx

Evaluate the following integration int(x^(2)+3)/(x^(6)(x^(2)+1))dx

Evaluate the following integral: int_1^3|x^2-4|dx

Evaluate the following integrals : int1/(1+cos2x)dx

Evaluate the following integral: int_2^4x/(x^2+1)dx

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx