Home
Class 12
MATHS
int (e^(xloga)+e^(alogx))dx...

`int (e^(xloga)+e^(alogx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( e^{x \log a} + e^{a \log x} \right) dx \), we can follow these steps: ### Step 1: Simplify the terms using properties of exponents and logarithms We start with the expression: \[ I = \int \left( e^{x \log a} + e^{a \log x} \right) dx \] Using the property \( e^{\log b} = b \), we can rewrite the terms: \[ e^{x \log a} = a^x \quad \text{and} \quad e^{a \log x} = x^a \] Thus, we can rewrite the integral as: \[ I = \int \left( a^x + x^a \right) dx \] ### Step 2: Integrate each term separately Now we can split the integral: \[ I = \int a^x \, dx + \int x^a \, dx \] We know the integral of \( a^x \) and \( x^a \): 1. The integral of \( a^x \) is: \[ \int a^x \, dx = \frac{a^x}{\ln a} + C_1 \] 2. The integral of \( x^a \) is: \[ \int x^a \, dx = \frac{x^{a+1}}{a+1} + C_2 \] ### Step 3: Combine the results Putting it all together, we have: \[ I = \frac{a^x}{\ln a} + \frac{x^{a+1}}{a+1} + C \] where \( C = C_1 + C_2 \) is the constant of integration. ### Final Answer Thus, the final result for the integral is: \[ I = \frac{a^x}{\ln a} + \frac{x^{a+1}}{a+1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

inte^(xlna)*e^x dx

int e^(2x)dx

Differentiate the following with respect of x : e^(xloga)+e^(alogx)+e^(aloga)

inte^(xloga).e^(x)dx is equal to

(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx