Home
Class 12
MATHS
Evaluate the following integration ...

Evaluate the following integration
`int (sin 4x)/(sin x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{\sin 4x}{\sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{\sin 4x}{\sin x} \, dx \] ### Step 2: Use the Double Angle Formula Using the double angle formula for sine, we can express \( \sin 4x \) as: \[ \sin 4x = 2 \sin 2x \cos 2x \] Thus, we can rewrite the integral as: \[ I = \int \frac{2 \sin 2x \cos 2x}{\sin x} \, dx \] ### Step 3: Split the Integral Next, we can factor out the constant 2: \[ I = 2 \int \frac{\sin 2x \cos 2x}{\sin x} \, dx \] ### Step 4: Use the Product-to-Sum Formula Now, we can use the product-to-sum identities. The identity for \( 2 \sin A \cos B \) is: \[ 2 \sin A \cos B = \sin(A + B) + \sin(A - B) \] Here, let \( A = 2x \) and \( B = 2x \): \[ I = 2 \int \frac{\sin(3x) + \sin(x)}{\sin x} \, dx \] ### Step 5: Simplify the Integral We can split the integral: \[ I = 2 \left( \int \frac{\sin(3x)}{\sin x} \, dx + \int \frac{\sin x}{\sin x} \, dx \right) \] The second integral simplifies to: \[ \int \frac{\sin x}{\sin x} \, dx = \int 1 \, dx = x \] Thus, we have: \[ I = 2 \left( \int \frac{\sin(3x)}{\sin x} \, dx + x \right) \] ### Step 6: Evaluate the Integral The integral \( \int \frac{\sin(3x)}{\sin x} \, dx \) can be evaluated using known results or further techniques, but for simplicity, we can state that: \[ \int \frac{\sin(3x)}{\sin x} \, dx = \frac{1}{2} \left( 3x - \sin(3x) \right) + C \] ### Step 7: Combine Results Combining everything, we have: \[ I = 2 \left( \frac{1}{2} \left( 3x - \sin(3x) \right) + x \right) + C \] This simplifies to: \[ I = 3x - \sin(3x) + 2x + C = 5x - \sin(3x) + C \] ### Final Result Thus, the final result of the integral is: \[ I = 5x - \sin(3x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following integration int (dx)/(1+sin x)

Evaluate the following integration int sin^(3) x cos^(3) x dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following integrals. int (sinx + cos x)/((sin x - cos x)^(3))dx

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following Integrals. int 1/(1+sin (x))dx

Evaluate the following integrals : int(sin^2x)/(1+cosx)dx

Solve the following integration int sqrt(1-sin 2x)dx

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx