Home
Class 12
MATHS
Evaluate the following Integrals : i...

Evaluate the following Integrals :
`int ((x+2)dx)/((x^(2)+3x+3)sqrt(x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{(x+2) \, dx}{(x^2 + 3x + 3) \sqrt{x+1}}, \] we can follow these steps: ### Step 1: Simplify the Denominator First, we can rewrite the denominator \(x^2 + 3x + 3\) in a more manageable form. Notice that: \[ x^2 + 3x + 3 = (x + 1)^2 + 2. \] Thus, we can express the integral as: \[ I = \int \frac{(x+2) \, dx}{((x + 1)^2 + 2) \sqrt{x + 1}}. \] ### Step 2: Substitution Next, we will use the substitution \(u = \sqrt{x + 1}\). Then, we have: \[ x = u^2 - 1 \quad \text{and} \quad dx = 2u \, du. \] Now, substituting these into the integral gives: \[ I = \int \frac{(u^2 - 1 + 2) \cdot 2u \, du}{((u^2)^2 - 2u^2 + 1 + 2) u} = \int \frac{(u^2 + 1) \cdot 2u \, du}{(u^4 - 2u^2 + 3) u}. \] ### Step 3: Simplify Further This simplifies to: \[ I = 2 \int \frac{(u^2 + 1) \, du}{u^4 - 2u^2 + 3}. \] ### Step 4: Break Down the Integral We can break this integral into two parts: \[ I = 2 \int \frac{u^2 \, du}{u^4 - 2u^2 + 3} + 2 \int \frac{du}{u^4 - 2u^2 + 3}. \] ### Step 5: Solve Each Integral The first integral can be solved using partial fractions or a suitable substitution, while the second integral can be recognized as a standard form. For the first integral, we can use the substitution \(v = u^2\), which gives us: \[ I_1 = 2 \int \frac{du}{u^4 - 2u^2 + 3} = 2 \int \frac{1}{(u^2 - 1)^2 + 2} \, du. \] This is a standard integral that can be solved using the arctangent function. ### Step 6: Combine Results After evaluating both integrals, we will combine the results and substitute back \(u = \sqrt{x + 1}\) to express the final answer in terms of \(x\). ### Final Answer The final expression for the integral will be: \[ I = \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{x}{\sqrt{3} \sqrt{x + 1}} \right) + C, \] where \(C\) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evalute the following integrals int (sqrt(3x -2)) dx

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following Integrals : int (x^(2))/((x-1)(x-2)(x-3))dx

Evaluate the following integrals : int_1^4(3x^2+2x)dx

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following integrals : int((1+x)^3)/(sqrt(x))dx

Evaluate the following integrals: int sqrt(1+(x^(2))/(9))dx

Evaluate the following integrals int_1^3(2x+3)dx

Evaluate the following integrals : int((x^3+8)(x-1))/(x^2-2x+4)dx

Evaluate the following integrals int sqrt((1-x)/(1+x))dx