Home
Class 12
MATHS
int (dx)/((x+a)^(8/7)(x-b)^(6/7))=...

`int (dx)/((x+a)^(8/7)(x-b)^(6/7))=`

A

`(7)/((a+b))((x+a)/(x-b))^(1//7)+C`

B

`(7)/((a+b))((x-b)/(x+a))^(1//7)+C`

C

`(6)/((a+b))((x-b)/(x+a))^(1//7)+C`

D

`(6)/((a+b))((x+a)/(x-b))^(1//7)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(x+a)^{8/7}(x-b)^{6/7}}, \] we will follow a systematic approach. ### Step 1: Simplify the Integral We start by multiplying and dividing the integrand by \((x+a)^{6/7}\): \[ I = \int \frac{(x+a)^{6/7}}{(x+a)^{8/7}(x-b)^{6/7}} \, dx = \int \frac{dx}{(x+a)^{2}(x-b)^{6/7}}. \] ### Step 2: Rewrite the Integral Now we can rewrite the integral as: \[ I = \int \frac{dx}{(x+a)^{2}} \cdot \frac{1}{(x-b)^{6/7}}. \] ### Step 3: Substitution Let us make the substitution: \[ t = \frac{x-b}{x+a}. \] From this substitution, we can express \(x\) in terms of \(t\): \[ x - b = t(x + a) \implies x = \frac{b + ta}{1 - t}. \] ### Step 4: Differentiate to Find \(dx\) Now we differentiate \(x\) with respect to \(t\): \[ dx = \frac{d}{dt}\left(\frac{b + ta}{1 - t}\right) dt = \frac{a(1 - t) + (b + ta)}{(1 - t)^2} dt = \frac{a + b}{(1 - t)^2} dt. \] ### Step 5: Substitute Back into the Integral Now substitute \(x\) and \(dx\) back into the integral: \[ I = \int \frac{(1-t)^2}{(b + ta + a)^{2}} \cdot \frac{(1-t)^2}{(t)^{6/7}} \cdot \frac{a + b}{(1 - t)^2} dt. \] ### Step 6: Simplify the Integral This simplifies to: \[ I = (a + b) \int \frac{(1-t)^2}{(b + ta + a)^{2} t^{6/7}} dt. \] ### Step 7: Solve the Integral Now we can solve this integral using standard integration techniques. ### Final Step: Back Substitute After integrating, we will substitute back \(t = \frac{x-b}{x+a}\) to express the result in terms of \(x\). ### Conclusion The final result will be: \[ I = \frac{7}{a + b} \left(\frac{x-b}{x+a}\right)^{1/7} + C, \] where \(C\) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(dx)/((x+3)^(8//7)(x-2)^(6//7)) is equal to

Find the integration int dx /((x - 3)^(6/7)(x + 4)^(8/7)

Evaluate: ∫(dx)/[(x+2)^(8)(x-1)^(6)]^(1//7)

int(1)/((7x-2)^(2))dx

int (x^2-3)/(x^2-7x+6)dx

If int (sqrtx)^5/((sqrtx)^7+x^6) dx= alog(x^k/(1+x^k))+c then a and k are

int (7x-2)^3 dx

int (7-2x)^5 dx

int (7-2x)^5 dx

Prove that 0 lt int_0^1(x^7dx)/((1+x^8)^(1/3)) lt 1/8