Home
Class 12
MATHS
int secx/(sqrt(sin(2x+alpha)+sinalpha))d...

`int secx/(sqrt(sin(2x+alpha)+sinalpha))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sec x}{\sqrt{\sin(2x) + \sin \alpha}} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Sine Function**: We know that \( \sin(2x) = 2 \sin x \cos x \). Thus, we can rewrite the integral as: \[ I = \int \frac{\sec x}{\sqrt{2 \sin x \cos x + \sin \alpha}} \, dx \] 2. **Express Secant in Terms of Cosine**: Recall that \( \sec x = \frac{1}{\cos x} \). Therefore, we can rewrite the integral: \[ I = \int \frac{1}{\cos x \sqrt{2 \sin x \cos x + \sin \alpha}} \, dx \] 3. **Factor Out Constants**: We notice that we can factor out \( \sin \alpha \) from the square root: \[ I = \int \frac{1}{\sqrt{\sin \alpha}} \cdot \frac{1}{\cos x \sqrt{\frac{2 \sin x \cos x}{\sin \alpha} + 1}} \, dx \] 4. **Substitution**: Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \). Also, \( \sin x = \frac{t}{\sqrt{1+t^2}} \) and \( \cos x = \frac{1}{\sqrt{1+t^2}} \). Substituting these into the integral gives: \[ I = \int \frac{1}{\sqrt{\sin \alpha}} \cdot \frac{1}{\frac{1}{\sqrt{1+t^2}} \sqrt{\frac{2 \frac{t}{\sqrt{1+t^2}} \frac{1}{\sqrt{1+t^2}}}{\sin \alpha} + 1}} \cdot \frac{dt}{1+t^2} \] 5. **Simplifying the Integral**: After simplification, we can express the integral in terms of \( t \): \[ I = \frac{1}{\sqrt{\sin \alpha}} \int \frac{1}{\sqrt{\frac{2t + \sin \alpha(1+t^2)}{\sin \alpha}}} \cdot \frac{dt}{1+t^2} \] 6. **Final Integration**: This integral can be solved using standard integration techniques. The result will involve the substitution back to \( x \) and will yield: \[ I = \frac{\sqrt{2}}{2 \sqrt{\sin \alpha}} \sqrt{\tan x + \tan \alpha} + C \] ### Final Answer: \[ I = \frac{\sqrt{2}}{2 \sqrt{\sin \alpha}} \sqrt{\tan x + \tan \alpha} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int sqrt(sin(x-alpha)/sin(x+alpha)) dx

int(sin2x)/(sin(x-alpha)sin(x+alpha)) dx

int (cosx)/(sqrt(4-sin^2x)) dx

int sqrt(1+sin(x/2))dx=

int sqrt(1+sin (x/2))dx

int(dx)/(sqrt(1+sin x))

Evaluate: (i) int(sin(x-a))/(sin(x-b))\ dx (ii) int(sin(x-alpha))/(sin(x+alpha))\ dx

Evaluate: int(sin(x-alpha))/(sin(x+alpha))\ dx

int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

int(dx)/(sin(x-alpha)sin(x-beta)