Home
Class 12
MATHS
The value of int({[x]})dx where {.} and ...

The value of `int({[x]})dx` where {.} and [.] denotes the fractional part of x and greatest integer function equals

A

0

B

1

C

2

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \{x\} [x] \, dx \), where \( \{x\} \) denotes the fractional part of \( x \) and \( [x] \) denotes the greatest integer function (or floor function), we can follow these steps: ### Step 1: Understand the Functions - The greatest integer function \( [x] \) gives the largest integer less than or equal to \( x \). - The fractional part function \( \{x\} \) is defined as \( \{x\} = x - [x] \). ### Step 2: Analyze the Integral We can express the integral as: \[ \int \{x\} [x] \, dx = \int (x - [x]) [x] \, dx \] However, since \( [x] \) is constant over the intervals \( [n, n+1) \) for \( n \in \mathbb{Z} \), we can break the integral into intervals. ### Step 3: Set Up the Integral Over Intervals For \( n \leq x < n+1 \): - \( [x] = n \) - \( \{x\} = x - n \) Thus, we can write: \[ \int_n^{n+1} \{x\} [x] \, dx = \int_n^{n+1} (x - n) n \, dx = n \int_n^{n+1} (x - n) \, dx \] ### Step 4: Evaluate the Integral Now, we compute: \[ \int_n^{n+1} (x - n) \, dx \] Let \( u = x - n \), then \( du = dx \) and the limits change from \( 0 \) to \( 1 \): \[ \int_0^1 u \, du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1^2}{2} - 0 = \frac{1}{2} \] Thus, \[ \int_n^{n+1} (x - n) \, dx = \frac{1}{2} \] ### Step 5: Combine the Results Now substituting back: \[ \int_n^{n+1} \{x\} [x] \, dx = n \cdot \frac{1}{2} = \frac{n}{2} \] ### Step 6: Sum Over All Intervals To find the total integral over all intervals, we sum from \( n = 0 \) to \( N \) (where \( N \) is the upper limit of integration): \[ \int_0^N \{x\} [x] \, dx = \sum_{n=0}^{N-1} \frac{n}{2} = \frac{1}{2} \sum_{n=0}^{N-1} n = \frac{1}{2} \cdot \frac{(N-1)N}{2} = \frac{(N-1)N}{4} \] ### Final Result Thus, the value of the integral \( \int \{x\} [x] \, dx \) is: \[ \frac{(N-1)N}{4} + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(4) {x} dx (where , {.} denotes fractional part of x) is equal to

Let y= {x}^([x]) then the value of int_0^3 yd x equals to (where {.} and [.] denote fractional part and integerpart function respectively)

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(0)^(1)({2x}-1)({3x}-1)dx , (where {} denotes fractional part opf x) is equal to :

If f(x) = {x} + { x + 1 } + {x + 2 }.........{x + 99), then the value of [f(sqrt2)] is, where (.) denotes fractional part function & [.] denotes the greatest integer function

The value of int_(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the greatest integer and fractional part of x) is equal to

If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional part function and [.] denotes greatest integer function and sgn(x) is a signum function)

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to