Home
Class 12
MATHS
If intf(x)cos x dx = 1/2 f^(2)(x)+C, the...

If `intf(x)cos x dx = 1/2 f^(2)(x)+C`, then `f(x)` can be

A

x

B

1

C

cos x

D

sin x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int f(x) \cos x \, dx = \frac{1}{2} f^2(x) + C \] ### Step 1: Differentiate both sides with respect to \( x \) We will apply the Fundamental Theorem of Calculus on the left side and the chain rule on the right side. \[ \frac{d}{dx} \left( \int f(x) \cos x \, dx \right) = \frac{d}{dx} \left( \frac{1}{2} f^2(x) + C \right) \] ### Step 2: Apply the Fundamental Theorem of Calculus The left side simplifies to: \[ f(x) \cos x \] ### Step 3: Differentiate the right side Using the chain rule, we differentiate \( \frac{1}{2} f^2(x) \): \[ \frac{d}{dx} \left( \frac{1}{2} f^2(x) \right) = f(x) f'(x) \] Thus, the right side becomes: \[ f(x) f'(x) \] ### Step 4: Set the derivatives equal to each other Now we have: \[ f(x) \cos x = f(x) f'(x) \] ### Step 5: Simplify the equation Assuming \( f(x) \neq 0 \), we can divide both sides by \( f(x) \): \[ \cos x = f'(x) \] ### Step 6: Integrate both sides Now, we will integrate both sides with respect to \( x \): \[ \int f'(x) \, dx = \int \cos x \, dx \] This gives us: \[ f(x) = \sin x + C \] ### Conclusion Thus, the function \( f(x) \) can be expressed as: \[ f(x) = \sin x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

If int f(x) dx = 2 cos sqrt(x) + c , then f(x) =

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

If int(dx)/(x^2+a x+1)=f(g(x))+c , then f(x) is inverse trigonometric function for |a|>2 f(x) is logarithmic function for |a| 2 g(x) is rational function for |a|<2

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If intf(x)dx=xcospix+C , then f((1)/(2))=

STATEMENT-1 : If int(1)/(f(x))dx=2log|f(x)|+c , then f(x)=(x)/(2) . STATEMENT-2 : When f(x)=(x)/(2) , then int(1)/(f(x))dx=int(2)/(x)dx=2log|x|+c STATEMENT-3 : inte^(x^(2))dx=e^(x^(2))+c