Home
Class 12
MATHS
The value of int (cos 8x-cos 7x)/(1+2 co...

The value of `int (cos 8x-cos 7x)/(1+2 cos 5x)dx`, is

A

`(sin 2x)/(2)+(cos 3x)/(3)+C`

B

`sin x - cos x + C`

C

`(sin 2x)/(2)-(cos 3x)/(3)+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos 8x - \cos 7x}{1 + 2 \cos 5x} \, dx \), we will follow these steps: ### Step 1: Use the Cosine Difference Formula We can use the formula for the difference of cosines: \[ \cos c - \cos d = -2 \sin\left(\frac{c + d}{2}\right) \sin\left(\frac{c - d}{2}\right) \] Here, let \( c = 8x \) and \( d = 7x \). Thus, we have: \[ \cos 8x - \cos 7x = -2 \sin\left(\frac{8x + 7x}{2}\right) \sin\left(\frac{8x - 7x}{2}\right) = -2 \sin\left(\frac{15x}{2}\right) \sin\left(\frac{x}{2}\right) \] ### Step 2: Rewrite the Integral Substituting this into the integral gives: \[ I = \int \frac{-2 \sin\left(\frac{15x}{2}\right) \sin\left(\frac{x}{2}\right)}{1 + 2 \cos 5x} \, dx \] ### Step 3: Simplify the Denominator We can rewrite \( \cos 5x \) using the identity \( \cos 2a = 1 - 2 \sin^2 a \): \[ \cos 5x = \cos\left(2 \cdot \frac{5x}{2}\right) = 1 - 2 \sin^2\left(\frac{5x}{2}\right) \] Thus, the denominator becomes: \[ 1 + 2 \cos 5x = 1 + 2(1 - 2 \sin^2\left(\frac{5x}{2}\right)) = 3 - 4 \sin^2\left(\frac{5x}{2}\right) \] ### Step 4: Substitute Back into the Integral Now, substituting this back into the integral: \[ I = \int \frac{-2 \sin\left(\frac{15x}{2}\right) \sin\left(\frac{x}{2}\right)}{3 - 4 \sin^2\left(\frac{5x}{2}\right)} \, dx \] ### Step 5: Use the Identity for Sine Using the identity \( \sin 3a = 3 \sin a - 4 \sin^3 a \), we can express \( -4 \sin^2\left(\frac{5x}{2}\right) \) in terms of \( \sin 3\left(\frac{5x}{2}\right) \): \[ -4 \sin^2\left(\frac{5x}{2}\right) = 3 \sin\left(\frac{15x}{2}\right) - \sin\left(\frac{15x}{2}\right) \] ### Step 6: Cancel Terms Now, substituting this back into our integral: \[ I = \int \frac{-2 \sin\left(\frac{15x}{2}\right) \sin\left(\frac{x}{2}\right)}{3 \sin\left(\frac{15x}{2}\right)} \, dx \] This simplifies to: \[ I = \int \frac{-2 \sin\left(\frac{x}{2}\right)}{3} \, dx \] ### Step 7: Integrate Now we can integrate: \[ I = -\frac{2}{3} \int \sin\left(\frac{x}{2}\right) \, dx \] The integral of \( \sin\left(kx\right) \) is \( -\frac{1}{k} \cos\left(kx\right) + C \). Thus: \[ I = -\frac{2}{3} \left(-2 \cos\left(\frac{x}{2}\right)\right) + C = \frac{4}{3} \cos\left(\frac{x}{2}\right) + C \] ### Final Solution The value of the integral is: \[ I = \frac{4}{3} \cos\left(\frac{x}{2}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int (cos 5x + cos 4x)/(1-2cos3x) dx

The value of the integral int(cos7x-cos8x)/(1+2cos5x)dx can be

int (1-cosx) /(cos x(1+cos x)) dx

int(x sin x+cos x)/(x cos x)dx

int(cos7x-cos8x)/(cos2x-cos3x)dx

The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

int (1-cos x)/(1+cos x) dx=?

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx