Home
Class 12
MATHS
If intf(x)dx=f(x), then int{f(x)}^2dx is...

If `intf(x)dx=f(x),` then `int{f(x)}^2dx` is equal to

A

`1/2 {f(x)}^(2)`

B

`{f(x)}^(3)`

C

`({f(x)}^(3))/(3)`

D

`{f(x)}^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. We know that \( \int f(x) \, dx = f(x) \). This implies that differentiating \( f(x) \) with respect to \( x \) gives us \( f(x) \) itself: \[ \frac{d}{dx} f(x) = f(x) \] 2. We need to find \( \int [f(x)]^2 \, dx \). ### Step-by-step Solution: **Step 1: Use Integration by Parts** We can use integration by parts, where we let: - \( u = f(x) \) (first function) - \( dv = f(x) \, dx \) (second function) Then we differentiate and integrate: - \( du = f'(x) \, dx \) - \( v = f(x) \) By the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we have: \[ \int f(x) \cdot f(x) \, dx = f(x) \cdot f(x) - \int f(x) \cdot f'(x) \, dx \] **Step 2: Substitute the Known Derivative** From our earlier deduction, we know that \( f'(x) = f(x) \). Therefore, we can substitute this into our equation: \[ \int f(x)^2 \, dx = f(x)^2 - \int f(x) \cdot f(x) \, dx \] This simplifies to: \[ \int f(x)^2 \, dx = f(x)^2 - \int f(x)^2 \, dx \] **Step 3: Rearranging the Equation** Now, we can rearrange the equation to isolate the integral: \[ \int f(x)^2 \, dx + \int f(x)^2 \, dx = f(x)^2 \] This gives: \[ 2 \int f(x)^2 \, dx = f(x)^2 \] **Step 4: Solve for the Integral** Dividing both sides by 2, we find: \[ \int f(x)^2 \, dx = \frac{1}{2} f(x)^2 \] ### Final Result Thus, the final answer is: \[ \int f(x)^2 \, dx = \frac{1}{2} f(x)^2 + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_0^2 f(x)dx=5 , then int_0^(50)f(x)dx is equal to

If intf(x)= Psi(x)dx+C then intx^(5)f(x^3)dx is equal to

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

ARIHANT MATHS ENGLISH-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/(sqrt(x-9)) w.r.t. x. If F(10)=60...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)...

    Text Solution

    |

  14. For x^2nenpi+1, n inN(the set of natural numbers), the integral intxsq...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate int(sin^(3)xdx)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx)).

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |