Home
Class 12
MATHS
If int f(x)dx=F(x), then intx^3f(x^2)dx ...

If `int f(x)dx=F(x),` then `intx^3f(x^2)dx` is equal to :

A

`1/2[x^(2){F(x)}^(2)dx]`

B

`1/2[x^(2)F(x^(2))-intF(x^(2))d(x^(2))]`

C

`1/2[x^(2)F(x)-1/2 int {F(x)}^(2)dx]`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^3 f(x^2) \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = x^2 \). Then, we differentiate to find \( dx \): \[ dt = 2x \, dx \implies dx = \frac{dt}{2x} \] Since \( x = \sqrt{t} \), we can substitute \( dx \) in terms of \( t \): \[ dx = \frac{dt}{2\sqrt{t}} \] ### Step 2: Change the Integral Now we substitute \( x^3 \) and \( f(x^2) \) in the integral: \[ x^3 = (x^2)^{3/2} = t^{3/2} \quad \text{and} \quad f(x^2) = f(t) \] Thus, the integral becomes: \[ \int x^3 f(x^2) \, dx = \int t^{3/2} f(t) \cdot \frac{dt}{2\sqrt{t}} = \int \frac{t^{3/2}}{2\sqrt{t}} f(t) \, dt \] Simplifying \( \frac{t^{3/2}}{2\sqrt{t}} \) gives: \[ \int \frac{t^{3/2}}{2\sqrt{t}} f(t) \, dt = \int \frac{t^{3/2}}{2t^{1/2}} f(t) \, dt = \int \frac{t}{2} f(t) \, dt \] ### Step 3: Factor out the constant Now we can factor out the constant \( \frac{1}{2} \): \[ = \frac{1}{2} \int t f(t) \, dt \] ### Step 4: Integration by Parts To solve \( \int t f(t) \, dt \), we can use integration by parts: Let \( u = t \) and \( dv = f(t) \, dt \). Then, we have: \[ du = dt \quad \text{and} \quad v = F(t) \quad \text{(since \( \int f(t) \, dt = F(t) \))} \] Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int t f(t) \, dt = t F(t) - \int F(t) \, dt \] ### Step 5: Substitute back Now substituting back into our integral: \[ \frac{1}{2} \left( t F(t) - \int F(t) \, dt \right) \] Substituting \( t = x^2 \): \[ = \frac{1}{2} \left( x^2 F(x^2) - \int F(x^2) \, dt \right) \] ### Final Result Thus, the final result is: \[ \int x^3 f(x^2) \, dx = \frac{1}{2} \left( x^2 F(x^2) - \int F(x^2) \, dt \right) \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If intf(x)= Psi(x)dx+C then intx^(5)f(x^3)dx is equal to

Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for all x,y, in R, if int_0^2 f(x)dx=alpha, then int_-2^2 f(x) dx is equal to

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_0^2 f(x)dx=5 , then int_0^(50)f(x)dx is equal to

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

If f(4-x)=f(4+x) and f(8-x)=f(8+x) and f(x) is a function for which int_0^8 f(x)dx=5 . Then int_0^200 f(x)dx is equal to

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

ARIHANT MATHS ENGLISH-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/(sqrt(x-9)) w.r.t. x. If F(10)=60...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)...

    Text Solution

    |

  14. For x^2nenpi+1, n inN(the set of natural numbers), the integral intxsq...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate int(sin^(3)xdx)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx)).

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |