Home
Class 12
MATHS
If n is a positive odd integer, then int...

If n is a positive odd integer, then `int |x^n| dx=`

A

`|(x^(n+1))/(n+1)|+C`

B

`(x^(n+1))/(n+1)+C`

C

`(|x|^(n)x)/(n+1)+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int |x^n| \, dx \) where \( n \) is a positive odd integer, we can follow these steps: ### Step 1: Understand the Absolute Value Since \( n \) is a positive odd integer, the expression \( x^n \) will be negative when \( x < 0 \) and positive when \( x > 0 \). Therefore, we can express the absolute value as follows: \[ |x^n| = \begin{cases} -x^n & \text{if } x < 0 \\ x^n & \text{if } x \geq 0 \end{cases} \] ### Step 2: Set Up the Integral We can break the integral into two cases based on the sign of \( x \): \[ \int |x^n| \, dx = \begin{cases} \int -x^n \, dx & \text{if } x < 0 \\ \int x^n \, dx & \text{if } x \geq 0 \end{cases} \] ### Step 3: Integrate Each Case 1. **For \( x < 0 \)**: \[ \int -x^n \, dx = -\frac{x^{n+1}}{n+1} + C_1 \] 2. **For \( x \geq 0 \)**: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C_2 \] ### Step 4: Combine the Results Now we can combine the results from both cases: \[ \int |x^n| \, dx = \begin{cases} -\frac{x^{n+1}}{n+1} + C_1 & \text{if } x < 0 \\ \frac{x^{n+1}}{n+1} + C_2 & \text{if } x \geq 0 \end{cases} \] ### Step 5: Express in Terms of Absolute Value To express this in a single formula, we can use the property of absolute values: \[ \int |x^n| \, dx = \frac{x^{n+1}}{n+1} \text{sgn}(x) + C \] where \( \text{sgn}(x) \) is the sign function, which is -1 for \( x < 0 \) and +1 for \( x > 0 \). ### Final Answer Thus, the final result can be summarized as: \[ \int |x^n| \, dx = \frac{|x|^{n+1}}{n+1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

If n is an odd positive integer, then a^(n)+b^(n) is divisible by

If n is a positive integer, then ((n+4)!)/((n+7)!)=

If n is a positive integer, then the number of terms in the expansion of (x+a)^n is

If n is an even positive integer, then a^(n)+b^(n) is divisible by

If A is askew symmetric matrix and n is an odd positive integer, then A^(n) is

If A is a skew-symmetric matrix and n is odd positive integer, then A^n is

If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is (1) an irrational number (2) an odd positive integer (3) an even positive integer (4) a rational number other than positive integers

If n is a positive integer, prove that: int_0^(2pi) (cos(n-1)x-cosnx)/(1-cosx)dx=2pi , hence or otherwise, show that int_0^(2pi) (sin((nx)/2)/sin(x/2))^2dx=2npi .

If n is a positive integer then 2^(4n) - 15n - 1 is divisible by

ARIHANT MATHS ENGLISH-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/(sqrt(x-9)) w.r.t. x. If F(10)=60...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)...

    Text Solution

    |

  14. For x^2nenpi+1, n inN(the set of natural numbers), the integral intxsq...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate int(sin^(3)xdx)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx)).

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |