Home
Class 12
MATHS
int(x^x)^x(2xlogex+x)dx is equal to...

`int(x^x)^x(2xlog_ex+x)dx` is equal to

A

`x^((x^(x)))+C`

B

`(x^(x))^(x)+C`

C

`x^(2).log_(e)x+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x^x)^x (2x \log_e x + x) \, dx \), we can follow these steps: ### Step 1: Set up the integral Let \[ I = \int (x^x)^x (2x \log_e x + x) \, dx \] ### Step 2: Simplify the expression We can rewrite \( (x^x)^x \) as \( x^{x^2} \). Therefore, we have: \[ I = \int x^{x^2} (2x \log_e x + x) \, dx \] ### Step 3: Factor out \( x \) Now, we can factor out \( x \) from the expression inside the integral: \[ I = \int x^{x^2} \left(2x \log_e x + x\right) \, dx = \int x^{x^2} x (2 \log_e x + 1) \, dx \] This simplifies to: \[ I = \int x^{x^2 + 1} (2 \log_e x + 1) \, dx \] ### Step 4: Use substitution Let \[ t = x^{x^2} \] Now, we take the natural logarithm of both sides: \[ \log_e t = x^2 \log_e x \] ### Step 5: Differentiate both sides Differentiating both sides with respect to \( x \): \[ \frac{1}{t} \frac{dt}{dx} = 2x \log_e x + x \] Thus, \[ dt = t (2x \log_e x + x) \, dx \] ### Step 6: Substitute back into the integral Substituting \( dt \) into the integral, we have: \[ I = \int dt \] ### Step 7: Integrate The integral of \( dt \) is: \[ I = t + C \] ### Step 8: Substitute back for \( t \) Recalling that \( t = x^{x^2} \), we get: \[ I = x^{x^2} + C \] ### Final Answer Thus, the integral evaluates to: \[ \int (x^x)^x (2x \log_e x + x) \, dx = x^{x^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int(x+1)^(2)e^(x)dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

The value of int_(-2)^(2) |[x]| dx is equal to

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

int(x^2e^(x))/((x+2)^(2))dx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int_(0)^(2) |x^(2)+2x-3|dx is equal to

The value of int(dx)/(x^(2)+x+1) is equal to

ARIHANT MATHS ENGLISH-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/(sqrt(x-9)) w.r.t. x. If F(10)=60...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)...

    Text Solution

    |

  14. For x^2nenpi+1, n inN(the set of natural numbers), the integral intxsq...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate int(sin^(3)xdx)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx)).

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |