Home
Class 12
MATHS
Let f(x) be a polynomial satisfying f(0)...

Let `f(x)` be a polynomial satisfying f(0)=2 , `f'(0)=3` and `f''(x)=f(x)` then f(4) equals

A

`(5(e^(8)+1))/(2e^(4))`

B

`(5(e^(8)-1))/(2e^(4))`

C

`(2e^(4))/(5(e^(8)-1))`

D

`(2e^(4))/(5(e^(8)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the polynomial \( f(x) \) that satisfies the given conditions. ### Step 1: Understand the conditions We are given: 1. \( f(0) = 2 \) 2. \( f'(0) = 3 \) 3. \( f''(x) = f(x) \) ### Step 2: Identify the general form of the polynomial The condition \( f''(x) = f(x) \) suggests that \( f(x) \) can be expressed in terms of exponential functions. The general solution to the differential equation \( f''(x) = f(x) \) is: \[ f(x) = A e^x + B e^{-x} \] where \( A \) and \( B \) are constants to be determined. ### Step 3: Calculate the first derivative Now, we find the first derivative of \( f(x) \): \[ f'(x) = A e^x - B e^{-x} \] ### Step 4: Apply the initial conditions Using the first initial condition \( f(0) = 2 \): \[ f(0) = A e^0 + B e^0 = A + B = 2 \quad \text{(1)} \] Using the second initial condition \( f'(0) = 3 \): \[ f'(0) = A e^0 - B e^0 = A - B = 3 \quad \text{(2)} \] ### Step 5: Solve the system of equations We now have a system of two equations: 1. \( A + B = 2 \) 2. \( A - B = 3 \) Adding these two equations: \[ (A + B) + (A - B) = 2 + 3 \implies 2A = 5 \implies A = \frac{5}{2} \] Substituting \( A \) back into equation (1): \[ \frac{5}{2} + B = 2 \implies B = 2 - \frac{5}{2} = -\frac{1}{2} \] ### Step 6: Write the polynomial Now we have: \[ A = \frac{5}{2}, \quad B = -\frac{1}{2} \] Thus, the polynomial is: \[ f(x) = \frac{5}{2} e^x - \frac{1}{2} e^{-x} \] ### Step 7: Calculate \( f(4) \) Now we need to find \( f(4) \): \[ f(4) = \frac{5}{2} e^4 - \frac{1}{2} e^{-4} \] ### Step 8: Simplify \( f(4) \) To simplify: \[ f(4) = \frac{5}{2} e^4 - \frac{1}{2 e^4} \] This can be expressed as: \[ f(4) = \frac{5 e^4 - 1}{2 e^4} \] ### Final Answer Thus, the value of \( f(4) \) is: \[ f(4) = \frac{5 e^4 - 1}{2 e^4} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f''(0)=6 , then int_(-1)^(2) f(x) is equal to

Let f be a function satisfying f''(x)=x^(-(3)/(2)) , f'(4)=2 and f(0)=0 . Then f(784) equals……..

Let f(x) be a polynomial function: f(x)=x^(5)+ . . . . if f(1)=0 and f(2)=0, then f(x) is divisible by

let f(x) be a polynomial satisfying f(x) : f(1/x) = f(x) + f(1/x) for all X in R :- {O} and f(5) =126, then find f(3).

Let f(x) is a polynomial satisfying f(x).f(y) = f(x) +f(y) + f(xy) - 2 for all x, y and f(2) = 1025, then the value of lim_(x->2) f'(x) is

Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1)/(x))" for all "xne0. If f(5)=126" and a,b,c are in G.P., then"f'(a),f'(b),f'(c) are in

Let f(x) be a quadratic polynomial satisfying f(2) + f(4) = 0. If unity is one root of f(x) = 0 then find the other root.

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

The second degree polynomial f(x), satisfying f(0)=o, f(1)=1,f'(x)gt0AAx in (0,1)

Let f be a continuous function satisfying f '(l n x)=[1 for 0 1 and f (0) = 0 then f(x) can be defined as

ARIHANT MATHS ENGLISH-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/(sqrt(x-9)) w.r.t. x. If F(10)=60...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)...

    Text Solution

    |

  14. For x^2nenpi+1, n inN(the set of natural numbers), the integral intxsq...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate int(sin^(3)xdx)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx)).

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |