Home
Class 12
MATHS
If the anti derivative of int sin^4x/x ...

If the anti derivative of `int sin^4x/x dx` is `f(x)` then `int(sin^4(p+q)x)/x dx` in terms of `f(x)` is

A

`f{(p+q)x}`

B

`(f{(p+q)x})/(p+q)`

C

`f{(p+q)x}(p+q)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the integral \(\int \frac{\sin^4((p+q)x)}{x} \, dx\) in terms of the function \(f(x)\), where \(f(x) = \int \frac{\sin^4 x}{x} \, dx\). ### Step-by-Step Solution: 1. **Understand the Given Information**: We know that \(f(x) = \int \frac{\sin^4 x}{x} \, dx\). 2. **Change of Variables**: We will perform a change of variables to express the integral in terms of \(f\). Let: \[ t = (p + q)x \] Then, differentiating both sides gives: \[ dt = (p + q) \, dx \quad \Rightarrow \quad dx = \frac{dt}{p + q} \] 3. **Substituting in the Integral**: Now we substitute \(x\) and \(dx\) in the integral: \[ \int \frac{\sin^4((p+q)x)}{x} \, dx = \int \frac{\sin^4(t)}{\frac{t}{p + q}} \cdot \frac{dt}{p + q} \] This simplifies to: \[ = \int \frac{\sin^4(t)}{t} \, dt \] 4. **Relating to \(f(t)\)**: From the definition of \(f(x)\), we know: \[ f(t) = \int \frac{\sin^4(t)}{t} \, dt \] Therefore, we can write: \[ \int \frac{\sin^4(t)}{t} \, dt = f(t) \] 5. **Substituting Back for \(t\)**: Now, we substitute back \(t = (p + q)x\): \[ f(t) = f((p + q)x) \] 6. **Final Result**: Thus, we have: \[ \int \frac{\sin^4((p+q)x)}{x} \, dx = f((p + q)x) \] ### Conclusion: The integral \(\int \frac{\sin^4((p+q)x)}{x} \, dx\) in terms of \(f(x)\) is: \[ f((p + q)x) \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int sin^2(4x+3)dx

int x.sin x dx

(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx

int(sin^(-1)(3x-4x^3)dx)

Evaluate: int(sin4x)/(sinx)\ dx

int(sin^2x)/(cos^(4)x)dx

int (sin 2x- 4e^(3x))dx

Evaluate: (i) int(sin4x)/(sin2x)\ dx (ii) int(sin4x)/(cos2x)\ dx

int (sin2x) dx/(1+sin^4x)

Evaluate: int(sin^4x)/(cos^8x)\ dx

ARIHANT MATHS ENGLISH-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/(sqrt(x-9)) w.r.t. x. If F(10)=60...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)...

    Text Solution

    |

  14. For x^2nenpi+1, n inN(the set of natural numbers), the integral intxsq...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate int(sin^(3)xdx)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx)).

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |