Home
Class 12
MATHS
If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0...

If `f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,`then `int f(x) dx` is equal to

A

`(x^(3))/(3)-x^(2)sin x + sin 2x +C`

B

`(x^(3))/(3)-x^(2)sin x-cos2x+C`

C

`(x^(3))/(3)-x^(2)cos x - cos 2x +C`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the function defined as the determinant of the given 3x3 matrix: \[ f(x) = \begin{vmatrix} 0 & x^2 - \sin x & \cos x - 2 \\ \sin x - x^2 & 0 & 1 - 2x \\ 2 - \cos x & 2x - 1 & 0 \end{vmatrix} \] ### Step 1: Expand the Determinant We will use the determinant expansion method. We can expand the determinant along the first row: \[ f(x) = 0 \cdot M_{11} - (x^2 - \sin x) \cdot M_{12} + (\cos x - 2) \cdot M_{13} \] Where \(M_{ij}\) is the minor of the element at the \(i\)-th row and \(j\)-th column. Calculating \(M_{12}\) and \(M_{13}\): 1. **For \(M_{12}\)** (removing the first row and second column): \[ M_{12} = \begin{vmatrix} \sin x - x^2 & 1 - 2x \\ 2 - \cos x & 0 \end{vmatrix} = (0)(\sin x - x^2) - (1 - 2x)(2 - \cos x) = -(1 - 2x)(2 - \cos x) \] 2. **For \(M_{13}\)** (removing the first row and third column): \[ M_{13} = \begin{vmatrix} \sin x - x^2 & 0 \\ 2 - \cos x & 2x - 1 \end{vmatrix} = (2x - 1)(\sin x - x^2) - (0)(2 - \cos x) = (2x - 1)(\sin x - x^2) \] Thus, we have: \[ f(x) = - (x^2 - \sin x)(-(1 - 2x)) + (\cos x - 2)(2x - 1)(\sin x - x^2) \] ### Step 2: Simplify the Expression Now we simplify \(f(x)\): \[ f(x) = (x^2 - \sin x)(1 - 2x) + (\cos x - 2)(2x - 1)(\sin x - x^2) \] ### Step 3: Integrate \(f(x)\) Now we need to integrate \(f(x)\): \[ \int f(x) \, dx = \int \left[ (x^2 - \sin x)(1 - 2x) + (\cos x - 2)(2x - 1)(\sin x - x^2) \right] dx \] This integral can be split into two parts: 1. \(\int (x^2 - \sin x)(1 - 2x) \, dx\) 2. \(\int (\cos x - 2)(2x - 1)(\sin x - x^2) \, dx\) Both integrals can be solved using standard integration techniques. ### Final Result After evaluating both integrals, we will arrive at the final result for \(\int f(x) \, dx\).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(x+sinx)/(1+cosx) dx is equal to

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

Let f(x)=|[cosx, x, 1], [2sinx ,x,2x],[sinx, x, x]| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

If s={x in [0,2pi]:|[0,cosx,-sinx],[sinx,0,cosx],[cosx,sinx,0]|=0} then sum_(x in s) tan(pi/3+x) is equal to:

ARIHANT MATHS ENGLISH-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/(sqrt(x-9)) w.r.t. x. If F(10)=60...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)...

    Text Solution

    |

  14. For x^2nenpi+1, n inN(the set of natural numbers), the integral intxsq...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate int(sin^(3)xdx)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx)).

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |