Home
Class 12
MATHS
If sin^(6)theta+cos^(6) theta-1= lambda ...

If `sin^(6)theta+cos^(6) theta-1= lambda sin^(2) theta cos^(2) theta`, find the value of `lambda`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) in the equation \[ \sin^6 \theta + \cos^6 \theta - 1 = \lambda \sin^2 \theta \cos^2 \theta, \] we can follow these steps: ### Step 1: Rewrite the left-hand side We can express \( \sin^6 \theta + \cos^6 \theta \) using the identity for the sum of cubes: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta)^3 + (\cos^2 \theta)^3. \] Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \), where \( a = \sin^2 \theta \) and \( b = \cos^2 \theta \), we have: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)((\sin^2 \theta)^2 - \sin^2 \theta \cos^2 \theta + (\cos^2 \theta)^2). \] ### Step 2: Simplify using the Pythagorean identity Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we can simplify: \[ \sin^6 \theta + \cos^6 \theta = 1 \cdot \left((\sin^2 \theta)^2 - \sin^2 \theta \cos^2 \theta + (\cos^2 \theta)^2\right). \] ### Step 3: Expand the expression Now we need to expand \( (\sin^2 \theta)^2 + (\cos^2 \theta)^2 \): \[ (\sin^2 \theta)^2 + (\cos^2 \theta)^2 = \sin^4 \theta + \cos^4 \theta. \] Using the identity \( \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \): \[ \sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta \cos^2 \theta. \] ### Step 4: Substitute back into the original equation Now substituting this back into the original equation: \[ (1 - 3\sin^2 \theta \cos^2 \theta) - 1 = \lambda \sin^2 \theta \cos^2 \theta. \] This simplifies to: \[ -3\sin^2 \theta \cos^2 \theta = \lambda \sin^2 \theta \cos^2 \theta. \] ### Step 5: Solve for \( \lambda \) Assuming \( \sin^2 \theta \cos^2 \theta \neq 0 \), we can divide both sides by \( \sin^2 \theta \cos^2 \theta \): \[ \lambda = -3. \] Thus, the value of \( \lambda \) is \[ \boxed{-3}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

If sin^2thetacos^2theta(1+tan^2theta)(1+cot^2theta)=lambda , then find the value of lambda .

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Which of the following values of a and b will make a(sin^(6)theta+cos^(6)theta)-b(sin^(4)theta+cos^(4)theta) independent of theta ?

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

If sin^6 theta + cos^6 theta + k sin^2 2theta =1 , then k is equal to :

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta