Home
Class 12
MATHS
Let fk(x) = 1/k(sin^k x + cos^k x) where...

Let `f_k(x) = 1/k(sin^k x + cos^k x)` where `x in RR` and `k gt= 1.` Then `f_4(x) - f_6(x)` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( f_4(x) - f_6(x) \) where \( f_k(x) = \frac{1}{k}(\sin^k x + \cos^k x) \). ### Step 1: Write the expressions for \( f_4(x) \) and \( f_6(x) \) \[ f_4(x) = \frac{1}{4} (\sin^4 x + \cos^4 x) \] \[ f_6(x) = \frac{1}{6} (\sin^6 x + \cos^6 x) \] ### Step 2: Simplify \( f_4(x) \) Using the identity \( a^2 + b^2 = (a + b)^2 - 2ab \): \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x \] Since \( \sin^2 x + \cos^2 x = 1 \): \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x \] Thus, \[ f_4(x) = \frac{1}{4} (1 - 2\sin^2 x \cos^2 x) \] ### Step 3: Simplify \( f_6(x) \) Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): \[ \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) \] Again, since \( \sin^2 x + \cos^2 x = 1 \): \[ \sin^6 x + \cos^6 x = 1(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) \] Substituting \( \sin^4 x + \cos^4 x \): \[ \sin^6 x + \cos^6 x = \sin^4 x + \cos^4 x - \sin^2 x \cos^2 x \] Using the previous result for \( \sin^4 x + \cos^4 x \): \[ \sin^6 x + \cos^6 x = (1 - 2\sin^2 x \cos^2 x) - \sin^2 x \cos^2 x = 1 - 3\sin^2 x \cos^2 x \] Thus, \[ f_6(x) = \frac{1}{6} (1 - 3\sin^2 x \cos^2 x) \] ### Step 4: Calculate \( f_4(x) - f_6(x) \) Now, we can find \( f_4(x) - f_6(x) \): \[ f_4(x) - f_6(x) = \left(\frac{1}{4}(1 - 2\sin^2 x \cos^2 x)\right) - \left(\frac{1}{6}(1 - 3\sin^2 x \cos^2 x)\right) \] ### Step 5: Find a common denominator and simplify The common denominator for \( 4 \) and \( 6 \) is \( 12 \): \[ f_4(x) - f_6(x) = \frac{3(1 - 2\sin^2 x \cos^2 x)}{12} - \frac{2(1 - 3\sin^2 x \cos^2 x)}{12} \] Combining the fractions: \[ = \frac{3(1 - 2\sin^2 x \cos^2 x) - 2(1 - 3\sin^2 x \cos^2 x)}{12} \] Distributing: \[ = \frac{3 - 6\sin^2 x \cos^2 x - 2 + 6\sin^2 x \cos^2 x}{12} \] Combining like terms: \[ = \frac{1}{12} \] ### Final Answer Thus, the final result is: \[ f_4(x) - f_6(x) = \frac{1}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Let f_K(x)""=1/k(s in^k x+cos^k x) where x in R and kgeq1 . Then f_4(x)-f_6(x) equals (1) 1/6 (2) 1/3 (3) 1/4 (4) 1/(12)

If f_k(x)=1/k(sin^kx+cos^kx) then f_4(x)-f_6 (x)= (A) 1/12 (B) 5/12 (C) (-1)/12 (D) -5/12

Let f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x) for some real number k. Determine(a) all real numbers k for which f(x) is constant for all values of x.

Let f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x) for some real number k. Determine(a) all real numbers k for which f(x) is constant for all values of x.

Let f(x + y) = f(x) .f(y) AA x, y in R suppose that f(k) =3, k in R and f'(0) = 11 then find f'(k)

Find k if fog=gof where f(x)=3x-1 , g(x)=4x+k .

Let f (x)= sin ^(-1) x-cos ^(-1) x, then the set of values of k for which of |f (x)|=k has exactly two distinct solutions is :

If f(k - x) + f(x) = sin x , then the value of integral I = int_(0)^(k) f(x)dx is equal to

Let K be the set of all values of x, where the function f(x) = sin |x| - |x| + 2(x-pi) cos |x| is not differentiable. Then, the set K is equal to

Consider two functions f(x)=1+e^(cot^(2)x) " and " g(x)=sqrt(2abs(sinx)-1)+(1-cos2x)/(1+sin^(4)x). bb"Statement I" The solutions of the equation f(x)=g(x) is given by x=(2n+1)pi/2, forall "n" in I. bb"Statement II" If f(x) ge k " and " g(x) le k (where k in R), then solutions of the equation f(x)=g(x) is the solution corresponding to the equation f(x)=k.