Home
Class 12
MATHS
If pi lt alpha lt (3pi)/2 then find the ...

If `pi lt alpha lt (3pi)/2` then find the value of expression `sqrt(4 sin^4 alpha+ sin^2 2alpha)+ 4 cos^2(pi/4- alpha/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{4 \sin^4 \alpha + \sin^2 2\alpha} + 4 \cos^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) \) given that \( \pi < \alpha < \frac{3\pi}{2} \), we will follow these steps: ### Step 1: Simplify \( \sin^2 2\alpha \) We know that: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] Thus, \[ \sin^2 2\alpha = (2 \sin \alpha \cos \alpha)^2 = 4 \sin^2 \alpha \cos^2 \alpha \] ### Step 2: Substitute \( \sin^2 2\alpha \) into the expression Now substituting this into the original expression: \[ \sqrt{4 \sin^4 \alpha + 4 \sin^2 \alpha \cos^2 \alpha} \] ### Step 3: Factor out common terms We can factor out \( 4 \sin^2 \alpha \): \[ \sqrt{4 \sin^2 \alpha (\sin^2 \alpha + \cos^2 \alpha)} = \sqrt{4 \sin^2 \alpha (1)} = \sqrt{4 \sin^2 \alpha} = 2 |\sin \alpha| \] ### Step 4: Determine the sign of \( \sin \alpha \) Since \( \alpha \) is in the interval \( (\pi, \frac{3\pi}{2}) \), \( \sin \alpha \) is negative. Therefore, \( |\sin \alpha| = -\sin \alpha \). Thus, \[ 2 |\sin \alpha| = -2 \sin \alpha \] ### Step 5: Simplify \( 4 \cos^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) \) Using the cosine identity: \[ \cos\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) = \frac{\sqrt{2}}{2}(\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}) \] Thus, \[ \cos^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) = \frac{1}{2}(\cos^2\frac{\alpha}{2} + \sin^2\frac{\alpha}{2} + 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}) = \frac{1}{2}(1 + \sin \alpha) \] So, \[ 4 \cos^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) = 2(1 + \sin \alpha) \] ### Step 6: Combine the results Now, combining the results from Step 4 and Step 5: \[ -2 \sin \alpha + 2(1 + \sin \alpha) = -2 \sin \alpha + 2 + 2 \sin \alpha = 2 \] ### Final Result Thus, the value of the expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The value of expression (tan alpha+sin alpha)/(2"cos"^(2)(alpha)/(2)) for alpha=(pi)/(4) is :

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If (3pi)/(2) gt alpha gt 2 pi , find the modulus and argument of (1 - cos 2 alpha) + i sin 2 alpha .

If pi/2 < alpha < 3pi /2 then the modulus argument of (1+cos 2alpha)+i sin2alpha

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

If sec alpha=13/5, (0 lt alpha lt pi/2) , then the value of (2-3cotalpha)/(4-9sqrt(sec^(2)alpha-1)) is

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

If (3pi)/2 < alpha < 2pi then the modulus argument of (1+cos 2alpha)+i sin2alpha

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)