Home
Class 12
MATHS
If sum(i=1)^(n) cos theta(i)=n, then the...

If `sum_(i=1)^(n) cos theta_(i)=n`, then the value of `sum_(i=1)^(n) sin theta_(i)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition: \[ \sum_{i=1}^{n} \cos \theta_i = n \] ### Step 1: Understand the implication of the summation The expression \(\sum_{i=1}^{n} \cos \theta_i = n\) means that the sum of the cosine values for \(n\) angles \(\theta_i\) equals \(n\). ### Step 2: Relate the cosine values to their maximum The maximum value of \(\cos \theta\) is 1. For the sum of \(n\) cosines to equal \(n\), each individual cosine must equal 1. This is because if any \(\cos \theta_i\) were less than 1, the total would be less than \(n\). Thus, we conclude: \[ \cos \theta_i = 1 \quad \text{for all } i = 1, 2, \ldots, n \] ### Step 3: Determine the corresponding sine values The cosine function and sine function are related through the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Since we have established that \(\cos \theta_i = 1\), we can substitute this into the identity: \[ \sin^2 \theta_i + 1^2 = 1 \] This simplifies to: \[ \sin^2 \theta_i + 1 = 1 \] ### Step 4: Solve for sine From the equation above, we can isolate \(\sin^2 \theta_i\): \[ \sin^2 \theta_i = 0 \] Taking the square root of both sides gives: \[ \sin \theta_i = 0 \quad \text{for all } i = 1, 2, \ldots, n \] ### Step 5: Calculate the summation of sine values Now, we can find the summation of the sine values: \[ \sum_{i=1}^{n} \sin \theta_i = \sum_{i=1}^{n} 0 = 0 \] ### Final Answer Thus, the value of \(\sum_{i=1}^{n} \sin \theta_i\) is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

For any n positive numbers a_(1),a_(2),…,a_(n) such that sum_(i=1)^(n) a_(i)=alpha , the least value of sum_(i=1)^(n) a_(i)^(-1) , is

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"

If a = cos theta +theta i sin, "then find the value of" (1+a)/(1-a) .

If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) (A) i tan n theta (B) tan n theta (C) icot n theta (D) -i tan n theta

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals